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ABSTRACT

We present a closed-form algorithm for blind identi�cation
of multiple-input/multiple-output (MIMO) �nite-impulse
response (FIR) systems driven by digital sources. The al-
gorithm is based on second-order statistics and yields an
asymptotically exact estimate of the MIMO channel. We
assign distinct spectral signatures to each user through trans-
mitter correlative �lters, and exploit this spectral asymme-
try to derive the closed-form solution. Simulation results
illustrate the good performance of the proposed approach.
We compare the mean-square error (MSE) of the MIMO
channel estimate against the Cramer-Rao bound, and as-
sess the algorithm capability in rejecting inter-user crosstalk
interference.

1. INTRODUCTION

We address the problem of blind identi�cation of digital
MIMO-FIR systems. This �nds application in Spatial Di-
vision Multiple Access (SDMA) architectures for mobile
wireless communications. Current approaches [1, 2, 3, 4]
use iterative procedures or gradient-based search techniques
to solve that problem. Being iterative algorithms, global
convergence is not guaranteed a priori and several time-
consuming restarts may be required. In this paper, we
present a closed-form blind MIMO system identi�cation al-
gorithm. The main advantage of this algorithm is that it
relies on a closed-form solution for the blind MIMO system
identi�cation problem. To obtain this closed-form solution,
we induce spectral asymmetry between the sources by us-
ing adequate correlative �lters at each transmitter. This re-
quires no additional power or bandwidth consumption nor
synchronization between the users. The correlative-coding
approach for MIMO system identi�cation was introduced
in [5]. Here, we use a similar framework to propose a new
blind identi�cation algorithm which yields asymptotically
exact MIMO channel estimates.

The paper is organized as follows. Section 2 introduces
the signal model and states the blind identi�cation prob-
lem. Section 3 describes the correlative coding approach.
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An identi�ability theorem, which establishes the unique-
ness of the channel estimates, is also presented. In Sec-
tion 4 the closed-form blind MIMO system identi�cation
algorithm is derived. Section 5 shows simulation results as-
sessing the performance of our method in the context of the
GSM system. Finally, Section 6 presents the conclusions of
this work.
Notation. Matrices (capital) and vectors are in boldface
type. Cn�m is the set of m� n matrices with complex en-
tries. R (A) and N (A) denote, respectively, the range and

null-space of matrix A. The notations (�)T , (�)�, (�)H, (�)#,
and tr (�) stand for transpose, complex conjugate, Hermi-
tian, the Moore-Penrose pseudo-inverse, and the trace op-
erator, respectively. The symbols In and Kn stand for the
n�n identity and forward-shift (ones in the �rst lower diag-
onal) matrices, respectively. Diagonal block matrices with
blocks A1; : : : ;An are represented by diag [A1; : : : ;An].

2. PROBLEM FORMULATION

Consider a P -input/N -output causal discrete-time noisy
linear time-invariant (LTI) digital MIMO system described
by the convolution equation

x (k) =

PX
p=1

Lp�1X
l=0

hp (l) sp (k� l) +w (k) ; (1)

where x (k) is an N -dimensional vector of system outputs,
fhp (l) : l = 0; 1; : : : ; Lp � 1g is the �nite impulse response
(FIR) associated to the pth user's scalar input signal sp (k),
and w (k) denotes additive noise. Equation (1) can be com-
pactly rewritten as

x (k) =

PX
p=1

Hpsp (k) +w (k) =Hs (k) +w (k) (2)

where the N�Lp matrix Hp � [hp (0) � � �hp (Lp � 1) ], and
H � [H1 � � �HP ] is the N �L channel convolution matrix .
L � L1 + � � �+ LP is the overall order of the system. The
vector s (k) is obtained by stacking the P vectors sp (k) �
[ sp (k) � � � sp (k � Lp + 1) ]T . The input signals sp (k) are
taken from a �nite digital modulation-dependent alphabet
Ap � C.

In this paper, we study the blind identi�cation of H.
We assume that: (A1) the number P of users is known
and the N � L channel matrix H is full-rank with N � L;



(A2) the sources are uncorrelated and the noise process
w (k) is zero-mean, wide sense stationary, and statistically
independent of s (k), with known autocorrelation matrices
Rw (l).

3. SPECTRAL DIVERSITY

Correlative �lters. In most digital communications sys-
tems, the emitted source random signals consist of sequences
of independent and identically distributed (i.i.d.) symbols
from a given constellation set. As a consequence, their re-
spective power spectral densities exhibit a similar at pat-
tern. In our approach, we propose to color the informa-
tion sequences prior to transmission, thus inducing a spec-
tral asimmetry between the sources. This will enable a
closed-form solution for the blind MIMO system identi�ca-
tion problem. At the pth source's transmitter, we pass the
white sequence generated by the pth user, say ap (k) 2 Ap,
through a correlative �lter with impulse response

cp (k) = cp (0) � (k) + cp (Lc) � (k � Lc) ; (3)

and transmit the colored sequence sp (k) � (cp � ap) (k).
Here, � (k) is the discrete-time delta and � denotes the
convolution operator. For mathematical convenience, the
correlation lag Lc in (3) must be greater than or equal to
the memory of any FIR channel in the MIMO system, i.e.,
Lc � max fL1; L2; : : : ; LP g. Although the delay spreads
Lp are unknown a priori , in many application scenarios it
is possible to adequately overestimate these parameters on
the basis of previous �eld experiments (e.g., in the GSM
mobile system, a typical multipath channel pro�le is avail-
able for several environments { hilly,urban,rural [9]). With
this correlative pre-processing, the autocorrelation function
of the �ltered process is

rsp (l) = ��p � (l+ Lc) + �2p � (l) + �p � (l� Lc) ; (4)

where �2p � jcp(0)j2 + jcp (Lc)j2 and �p � cp (0)
� cp (Lc) de-

note, respectively, the power and the new correlation peak.
In (4), we have assumed white input sequences with unit
power. This entails no loss of generality since H absorbs
any multiplicative factor. Consequently, the autocorrela-
tion matrices of the process s (k) in (2) are, for l � Lc,

Rs (0) = diag
�
�21IL1 ; � � � ; �2P ILP

�
;

Rs (l) = diag
�
�1K

l�Lc
L1

; � � � ; �PKl�Lc
LP

�
: (5)

For the correlative �lters, we adopt the choice cp (0) = 1=
p
2

and cp (Lc) = 1=
p
2ej 2�(p�1)=P . This solution distributes

the correlation coe�cients �p uniformly around the circle
of radius r = 1=2 in the complex plane. For completness,
we formally state our last assumption: (A3) the pth user
correlates its zero-mean unit-power symbols ap (k) 2 Ap so
that equations (4) and (5) hold.

System Identi�ability. MIMO systems are uniquely de-
�ned under the framework established by (A1)-(A3). More
precisely, we have the following theorem.
Theorem 1 Consider the signal model in (2) and suppose
that (A1)-(A3) are satis�ed. Then, each user convolution
matrix Hp is uniquely determined up to a phase factor by

the output autocorrelation matrices Rx (0) ;Rx (Lc), and

Rx (Lc + 1). In other words, if Ĥ =
�
Ĥ1 � � � ĤP

�
is any

channel matrix inducing these same statistics, then

Ĥ =H�; � = diag
�
ej �1IL1 ; � � � ej �P ILP

�
;

or, equivalently, Ĥp =Hpe
j �p .

A proof of this theorem can be found in [5]. Notice that the
residual ambiguity matrix � is diagonal , thus e�ectively
decoupling the sources. As it is well known, the remaining
phase factors cannot be resolved by just using 2nd order
statistics.

4. BLIND IDENTIFICATION ALGORITHM

We present the closed-form algorithm that blindly identi�es
the channel convolution matrix H. The algorithm consists
of �ve main steps.

Step 1: Estimation of L and H0 = HQH : The order
L is determined as the rank of Rx (0) � Rw (0) = HHH.
In practice, we use the MDL or AIC criteria [10]. Irrespec-
tive of the approach chosen, a truncated EVD, Rx (0) �
Rw (0) = V�2VH , where V is a N � L matrix with or-
thonormal columns and � is an invertible diagonal matrix,
will be available. It is easy to verify that H0 � V� satis�es
H0 = HQH , where Q = [Q1 � � �QP ] is an L � L unitary
matrix (Qp : L � Lp).

Step 2: Estimation of L1; : : : ; LP : De�ne the matrices
Ml � H#

0 (Rx (l)�Rw (l))H#H
0 , where H#

0 = ��1VH

is the pseudo-inverse of H0. Thus, Ml = QRs (l)QH .
From the structure of Rs (Lc) in (5), Lp is the algebraic
multiplicity of �p as an eigenvalue of MLc . Therefore,
if MLc = UTUH is a Schur decomposition (U: unitary,
T:upper-triangular), the parameters Lp are obtained by di-
rect inspection of the diagonal of T. From this, the ma-
trix U is partitioned into P submatrices U = [U1 � � �UP ]
(Up : L� Lp).

Step 3: Estimation of �p � QpQ
H
p . Since MLc is

a normal matrix, T is diagonal [11] (in practice, the o�-
diagonal entries are negligible). Without loss of generality,
let the diagonal of T be ordered as Rs (Lc), see (5), then
QpQ

H
p = UpU

H
p . That is, the projector associated to the

pth user, i.e., the orthogonal projector onto R (Qp), is also
available from the Schur decomposition.

Step 4: Estimation of Qp = [qp (0) � � �qp (Lp � 1) ].
Consider the pth user, and set

Np ��pMLc+1 + (IL ��p) :

Then, Np = �pQpKLpQ
H
p + (IL ��p), and N

�
NH

p

�
=

span fqp (0)g. That is, the last right-singular vector of NH
p

equals q̂p (0) = qp(0)e
j �p . The remaining columns of Qp

can be obtained in parallel by setting

q̂p (l) �Mlq̂p (0) = qp (l) e
j �p ;

for l = 1; : : : ; Lp� 1. Without loss of generality, we assume
in the sequel that �p = 0.

Step 5. Estimation of H. Let Q̂ =
�
Q̂1 � � � Q̂P

�
. In



practice, this matrix is not unitary. To match its struc-
ture with this prior knowledge, we project the estimate
onto the group of unitary matrices of CL�L. This can
be achieved through a polar decomposition [11], which re-
quires an L � L SVD. To simplify the notation, we also
denote the result of that projection by Q̂. That is, we
have an estimate for the channel matrix Q in the samples
y (k) � H#

0 x (k) = Qs (k) + n (k), (n (k) � H#
0 w (k)). In

Appendix A, we develop an optimal procedure for copying
each source's scalar emitted signal sp (k) from y (k). The
procedure is based on synchronization of the replicas and
their coherent recombination to attain high SNR. Let ŝp (k),
p = 1; : : : ; P , be the sources' signals estimates obtained by
this method, and set ŝp (k) � [ ŝp (k) � � � ŝp (k � Lp + 1) ].
That is, we reconstruct the symbols' vector based on their
previously known time structure. The MIMO channel con-
volution matrix is obtained as Ĥ = E

�
x (k) ŝ (k)H

	
or, in

a �nite K-samples situation, as Ĥ = XŜ#, where the kth
column of X and Ŝ are x (k) and ŝ (k), respectively.

5. COMPUTER SIMULATIONS

To assess the performance of our algorithm in a multi-user
environment, we considered P = 3 binary sources, and used
typical values of the mobile GSM system. Namely, the stan-
dardised impulse response corresponding to the more hostile
propagation environment [9] models the air interface chan-
nel linking each source to one antenna element. This mul-
tipath response consists of six delta impulses modeling six
equally-powered independent Rayleigh-fading paths. The
delays associated to these paths range from �min = 0�s
to �max = 16�s in equal steps of �step = 3:2�s. In addi-
tion to the amplitude random modulation, each path is also
randomly modulated in phase. The sources use the sym-
bol period T = 3:7�s, and transmit raised-cosine pulses
rT=2 (t� T=2) with 100% rollo�. With these parameters,
each system's impulse response spans over Lp = 5 sym-
bol intervals. At the base station, we assumed an antenna
array with D = 6 sensors and an oversampling factor of
J = 4. This results in MIMO channel matrices H of di-
mension (DJ)� (L1 + L2 + L3) = 24�15. Notice also that
each matrix H contains samples of M � P = 18 GSM im-
pulse responses. The correlative �lters were designed as in
section 3, with Lc = 5. The system's output is corrupted
by spatio-temporal white Gaussian noise.

We considered S = 5 distinct scenarios H. For each
one, the noise variance was chosen to �x the SNR = 20dB,
where SNR � E

�jjHs (k)jj2	 =E�jjw (k)jj2	. The num-
ber of data samples used to estimate each H ranges from
Kmin = 200 to Kmax = 1000 in steps of Kstep = 100.
For each K, we ran a Monte Carlo simulation consisting
of M = 1000 independent trials. We computed the corre-
sponding MSE. Figure 1 displays the average results over
the S = 5 scenarios considered, and against the Cramer-Rao
bound (CRB). As we see, the algorithm is asymptotically
consistent, meeting in the limit the CRB [6].

We also evaluate the ability of our algorithm to dis-
criminate among the users. Once the channel matrix H
is identi�ed, the pth user's signal is unscrambled from the
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Figure 1: Mean-Square Error of the Algorithm (solid) and
CRB (dotted)

observations by yp =WH
p x (k) (see Appendix A), thus

yp (k) =WH
p Hpsp (k) +

X
q 6=p

WH
p Hqsq (k) + n (k) : (6)

The second term on the right-hand side of (6) measures the
residual user's interference crosstalk. Its relative power can
be measured by the signal-to-interference ratio (SIR),

SIRp �
E
n���� _Hpsp (k)

����2o

E

�������Pq 6=p
_Hqsq (k)

������2
� =

tr
�
_Hp

_HH

p

�
P

q 6=p
tr
�
_Hq

_HH
q

� ;

where we have de�ned _Hq � WH
p Hp. Figure 2 shows the

average results obtained in terms of SIRp, over the S = 5
scenarios simulated. The solid, dashed, and dotted lines
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Figure 2: Signal-to-Interference Ratio for User 1,2,3

refer to the �rst, second, and third user, respectively. As



seen, our method is very e�ective in rejecting inter-user
interference even for small data blocks.

6. CONCLUSIONS

We proposed an asymptotically exact second order-statistics
based closed-form algorithm for the blind identi�cation of
MIMO-FIR systems driven by digital sources. In our ap-
proach, the data streams are adequately colored prior to
transmission, in order to assign an unique spectral signature
to each user. This requires no additional power, bandwidth,
or synchronization between the sources. We presented an
identi�ability theorem which establishes the uniqueness of
MIMO systems under this correlative framework.

Computer simulations illustrated the good performance
of the proposed blind identi�cation algorithm, either in
terms of mean square-error of the channel estimates or the
algorithm's ability in supressing inter-user crosstalk.
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A. SOURCE'S SIGNAL ESTIMATION

Consider the signal model in (2). We develop an optimal
estimator for each source's signal sp (k), given H. Focus
on the pth user. The �rst step consists in isolating its sig-
nal from the observations. This is accomplished through
an MVDR like beamforming approach, yp (k) �WH

p x (k),
which preserves the signal of interest and nulls the interfer-
ence, thus yielding the optimal oblique projector,

Wp = arg min
WHHq = ILp�(p� q)

E
�����WHx (k)

����	2 : (7)

After some algebra, we �nd Wp = �pHp

�
HH

p �pHp

��1
,

where �p � R�1w �R�1w ~Hp

�
~HH
p R

�1
w

~Hp

��1 ~HH
p R

�1
w ; here,

the matrix ~Hp is obtained fromH by deleting the submatrix
Hp and Rw � Rw (0). The next step exploits the fact that
multiple delayed replicas of sp (k) are available in the vector
sp (k). We synchronize the time-delayed signals in the mu-
tichannel vector y (k), obtaining �yp (k) = 1sp (k) + �n (k),

where 1 = [ 1 � � � 1 ]T (Lp times), and the lth entry of �n (k)
equals the lth entry of WH

p w (k + l � 1). The minimum
variance unbiased (MVU) estimator for sp (k) is given by

ŝp (k) =
1TR �n (0)�1

1TR �n (0)�1 1
�yp (k) :

Since sp (k) belongs to a �nite alphabet (notice that this
is true even with correlative coding), a minimum-distance
receiver is then used to reconstruct the emitted colored sym-
bols. To simplify the notation, we also denote the output
of this decison device by ŝp (k) in the paper (section 4, step
5). Extraction of the white information symbols ap (k) from
sp (k) is straightforward by a MLSE approach [8].


