ACID/HNN: CLUSTERING HIERARCHIES OF NEURAL NETWORKS
FOR CONTEXT-DEPENDENT CONNECTIONIST ACOUSTIC MODELING

Jurgen Fritsch, Michael Finke

Interactive Systems Labs
University of Karlsruhe, Germany and Carnegie Mellon University, USA
fritsch@ira.uka.de, finkem@cs.cmu.edu

ABSTRACT vent of hybrid NN/HMM models. The application of decision trees

to the clustering of tri-, quint- and even septphones recently led to
systems consisting of thousands of HMM states. Since modeling
of observation probabilities using mixture densities is independent
for each state, an increase in the number of states imposes no con-

' . . . ~ ceptual problem. In contrast, connectionist acoustic models jointly
tion Divergence (ACID) to automatically design and robustly esti- estimate posterior state probabilities and are much harder to scale

metlte If—heratrchtl%s of N deur?(IjNgt\_/vorI:s (Hll\lN{ for daLb,\'/tlﬁr”%/ ItargeW to larger systems. Often, context-modeling is avoided at all. Nev-
Sets oﬂfotn er)l(. A eP‘f}!‘ eln emsu;:y reec UIS. ere i | N a”esd_ eertheless, significant improvements in recognition accuracy can be
argue that a hierarchical approach IS crucial In applying locally dis- gained through context modeling in both traditional and connec-
criminative connectionist models to the typically very large state

. tionist acoustic modeling. Factoring of state posteriors according
spaces observed in LVCSR systems. We evaluate the AClD/HNNto monophone and context identity can be applied to modularize

framework on the Switchboard conversatlonal_ telephone speech[he connectionist estimation process into several networks [4, 6, 8].
corpus. | Fgrthermorg, we focus on the ben.e.f'ts of th? prOpQSGdHowever, the number of HMM states and therefore the level of
connectionist acoustic model, namely exploiting the hierarchical context-dependence that can be modeled with such an approach is

We present the ACID/HNN framework, a principled approach to

hierarchical connectionist acoustic modeling in large vocabulary
conversational speech recognition (LVCSR). Our approach con-
sists of an Agglomerative Clustering algorithm based on Informa-

structure for speaker adaptation and decoding speed-up algorithmﬁimited
What is missing for connectionist LVCSR is a principled approach
1. INTRODUCTION that scales well to the large number of HMM states that are typ-

ically required to achieve competitive performance. This paper
A few years back, several researchers (e.g. [1]) succesfully experi-presents the ACID/HNN [5] framework which aims at providing
mented with neural networks as probabilistic estimators for hidden such an approach. Viewing the estimation of posterior state prob-
Markov models. This approach is often termed hybrid NN/HMM abilities as a hierarchical process, an automatically clustered tree
since the usual parametric mixture densities to model HMM ob- structured ensemble of neural networks is applied to estimate state
servation probabilities are replaced by connectionist estimators ofposteriors . We give results on the Switchboard LVCSR corpus
posterior probabilities. The experiments indicated an advantageand experimentally demonstrate how the hierarchical structure of
of hybrid models in terms of discriminative power, required num- such an acoustic model can directly and efficiently be exploited for
ber of parameters and decoding speed. These results led to expurposes such as speaker adaptation and decoding speed-up.
tensive research in connectionist acoustic modeling for HMM sys-
tems with promising and sometimes superior results compared to
conventional acoustic modeling. However, despite the success

in applying connectionist acoustic modeling to a wide range of cqnnectionist acoustic modeling for hybrid NN/HMM system is

speech recognition tasks, current state-of-the-art systems for large.naracterized by the estimation of posterior state probabilities us-
vocabulary conversational speech recognition (LVCSR) on €or- ing one or several neural networks. Integration of this model into

pora such as Switchboard and Broadcast News almost entirely relyina vm framework is justified by the application of Bayes rule
on the conventional paradigm for acoustic modeling (with the ex-

ception of [2, 3]). What are the reasons for this preference towards p(si|x)

traditional acoustic models? p(x|s:) = P(s:) p(x)

First, training of connectionist acoustic models usually is compu-

tationally very expensive. Compared to mixture density models, to get estimates of the state observation likelihp¢gl|s;) given
training times often are orders of magnitude higher for neural net- an acoustic feature vectar. Usually, the ternp(x) is neglected
works. This fact is most obvious in LVCSR tasks, where the largest because it is constant for all states and does not influence the out-
amounts of training data are available. Furthermore, in contrast tocome of a Viterbi decoder. Therefore, scaled observation likeli-
mixtures of Gaussians, connectionist acoustic models are mostlyhoods can be computed from state posteriors by dividing by state
trained with on-line stochastic gradient optimization techniques priors P(s;).

that require hand-optimization of learning parameters such as gainFor context-independent systems, the number of HMM states is
and momentum factor. small enough to apply a single neural network to jointly estimate
Second and much more critical, context modeling with traditional the posterior state probabilities. However, introducing context-
continuous density HMMs has evolved significantly since the ad- dependence increases the number of states significantly and train-

2. HIERARCHICAL CONNECTIONIST MODELING




ing a single neural network becomes prohibitive due to the large wherep(s;|Sk) is the prior probability of state; within the set
amount of output nodes that would be necessary. A distributed rep-S;. Initially, each state represents an individual set or cluster. Ag-
resentation can be realized by factoring the posterior state proba-glomerative clustering then iteratively merges the pair of sets with
bilities [4, 6, 8]. Typically, posterior state probabilities are fac- minimum distance according to the defined divergence measure.
tored according to monophone and context-identity. In contrast, Eventually, the algorithm terminates with a single cluster contain-
we present a more principled approach where factoring is guideding all states. The hierarchical structure that evolves during clus-

by an agglomerative clustering process.

Figure 1: Hierarchical Decomposition of Posteriors

Let S denote the set of all (decision tree clustered) HMM stajes
Consider we partitio into M disjoint and non-empty subsefs.

A particular state, will now be a member of and exactly one of
the subsets;. Therefore, we can rewrite the posterior probability
of states;, as a joint probability of state and appropriate sulsset
and factor it according to

p(sk, Silx) with sp €5

p(Si[x) p(sk|Si, %)

Thus, the global task of discriminating between all the states in
has been converted into (1) discriminating between sulssetad
(2) independently discriminating between the statggontained
within each of the subsetS;. Recursively repeating this process

p(sklx)

tering constitutes a suitable decomposition of the posterior state
probabilities.

4. HIERARCHIES OF NEURAL NETWORKS (HNN)

Fig. 2 gives a schematic overview of an HNN based acoustic
model. For the estimation of conditional posteriors in each node
we are using small 2-layer perceptrons.
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Figure 2: Hierarchy of Neural Networks

The outcome of the ACID clustering algorithm is a binary tree
structure. For a given number of HMM statessuch a hierarchy
requires to traim — 1 neural networks. In order to get a more com-
pact HNN with less internal nodes (networks), we apply a greedy

yields a hierarchical tree-organized structure (Fig. 1). One of the bottom-up node merging algorithm with a constrained maximum
critical aspect of such a hierarchical decomposition of posteriors branching factob (b < 10) to obtain the final HNN structure.

is the strategy for partitioning state sets [10].

3. THE ACID ALGORITHM

ACID is an agglomerative clustering algorithm that is based on a
measure of the symmetric information divergence between sets ofd

HMM states. The first step in the ACID algorithm is to estimate the

Such a strategy also has implications on the training of a hierarchy
of networks. At the root node, we have to train a network to ap-
proximate unconditional posteriors which can be accomplished by
training on the full training set. However, going further down the
tree, the available training data has to be distributed among chil-
ren nodes so that the corresponding networks learn to approxi-
mate the requiredonditional posteriors. Therefore, networks at

parameters of a simple parametric model of the likelihood for each the bottqm of a(ljn H_NN potentially _receive vehry little trainifng d.ellti?)'l
state, in our case diagonal covariance Gaussians. For this kind OIBy_n"_lerg(ljng n;) ef‘ in an HNN, we |ncresset € amount of available
model, the symmetric information divergence between two states!raining data for the respective network.

s; ands; amounts to

(o + U?k)(llik — ix)?
‘7i2k‘7]2k

n 2 2
1 (0jx — o) +
d(si; 85) = 5 y
k=1

whereo?, andy;;, denote thek-th coefficient of the variance and
mean vectors of class;, respectively. Making the simplifying
assumption of linearity of information divergence, we define the
following distance measure between sets of st8jeandS;

D(Si,S) = > p(silSk) Y p(silSi)d(si, s;)

5; €Sy s;€S]

After training has converged, the posterior probability of a specific
leaf/state in the HNN can be evaluated by traversing the tree from
root node to the leaf, evaluating the networks and multiplying the
conditional posteriors along the way.

5. EXPERIMENTS ON SWITCHBOARD

Switchboard is a large corpus of conversational American English

dialogs, recorded in telephone quality all over the US. It consists of

about 170 hours of speech. Switchboard is a comparably hard task,
current best systems achieve word error rates of 30-40% in NIST’s

annual evaluations on this corpus. For our experiments on Switch-
board, we integrated the ACID/HNN framework into the Janus-



RTk Switchboard 1997 recognizer [3] and replaced the mixtures 6. EXPLOITING HIERARCHICAL STRUCTURE
of Gaussians with the proposed hierarchical connectionist acous-

tic modeling part. The key advantage of the ACID/HNN framework is its hierarchical
structure. In the remainder, we will experimentally demonstrate
5.1. System Setup how algorithms such as speaker adaptation and decoding speed-up

can benefit from this structure.
Preprocessing consists of extracting an MFCC based feature vec- K .
tor every 10 ms. The final feature vector is computed by a trun- 6-1 Speaker Adaptation

cated L_DA transform on the concatenation of MFCCs and_ the_ir Nowadays, techniques for adapting an acoustic model to specific
respective deltas and delta-deltas. Vocal tract length normalizationgpeakers and/or recording conditions such as MLLR [9] are widely
and cepstral mean subtraction are used to extenuate speaker aﬂfged and consistently improve performance. However, due to lim-
channel differences. For acoustic modeling, we use allophonic de-jted amounts of adaptation data these techniques usually require to
cision trees to cluster 3-state HMMs. The overall model consists of pyjld additional structure, for instance in form of regression trees,
24000 distinct states. Using this model and mixtures of Gaussianstg cluster acoustically similar models so that unseen models can
for observation probability estimation the Janus-RTk recognizer pe adapted too. In an ACID clustered HNN, there is no need for

scored tied first in NIST’s 1997 Switchboard evaluation. additional structure since parameter sharing is inherently realized.
For instance, adaptation can consist of simply adapting the param-
5.2. Clustering and Training of HNNs eters of the root node, since this node is shared by all models and

will receive the highest amount of adaptation data.

For unsupervised speaker adaptation experiments on Switchboard,
we were decoding approximately 3 minutes of speech from each of
the 40 SWB test speakers. The resulting hypothesis were aligned
with the input data to get a labeled training set and filtered by a
confidence measure to discard regions that we suspect contain er-
rors. For each speaker, we adapt not only the network in the root

Applying the ACID/HNN framework to our system requires to de-
sign an HNN with 24000 leaves. Using the ACID algorithm, we
constructed an initial binary tree structure with depth 18. Node
merging withb = 10 was then applied, resulting in the final HNN
with depth 5 and a total of 4046 internal nodes. The following
table summarizes the structure of this HNN:

[tree level || #NN | min/max children | # params] node but all those networks in the HNN that receive at least 1000
T T 1010 2512 patterns in order to guarantee sufficient generalization. Adaptation
7 10 7710 27560 consists in backpropagating errors to the hidden layer and training
3 77 2710 167529 only the weights from input to hidden layer. Fig 4 gives results of
4 524 3710 671748 unsupervised adaptation for the individual speakers.
5 3434 3/10 1957432 14
[ total [[ 4046 | - | 28M] 1
=
For training the HNN, we used 87000 utterances or 60 million % 10
training patterns. Accurate training labels were available from the % I
standard mixture of Gaussians Janus-RTk system. The parameters & 8
of all 4046 networks in the HNN could be jointly estimated with 2 s
only 3 passes through the training data using stochastic gradient <
ascent in log-likelihood. Fig. 3 shows the evolution of the log- ;f 4
likelihood of cross-validation data during training. 2 ﬂHm I
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Figure 3: Typical HNN Training Curve
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For testing our hierarchical acoustic model, we were using the No of adaptation patterns

1997 Switchboard development test set, consisting of 30 seconds _. ) . .

speech from 40 speakers from the Switchboard (SWB) and 40 Figure 4: Unsupervised Speaker Adaptation — 40 SWB speakers
speaker from the CallHome (CH) corpus. Using an interpolated As we expected, the number of adapted networks in the HNN in-
trigram language model, our gender-independent 24k ACID/HNN creases in proportion to the available adaptation data. However,
system achieves a word error rate of 33.3% on SWB and 43.9% onwhile the word error rate improves for most of the speakers, adap-
CH. tation is observed to be counterproductive for some of the speakers



with a small amount of adaptation data. Overall, adaptation de- of this technique on both speed and accuracy for some values of
creases word error rate by 5% relative to the unadapted baselingoruneT with varying parameter (1077 < ¢ < 1).

HNN. When restricting adaptation to those speakers with more Using such a simple technique (essentially one line of code), the
than 8000 patterns of adaptation data, the word error rate dropsdecoding time of the presented ACID/HNN based acoustic model
by 8% relative. can be reduced from over 140xRT to about 24xRT without affect-
ing the word error rate at all. Allowing a word error rate of 45%,
the speed of the recognizer can be increased further to 14xRT.
Ma_ny techmques have recentl_y been mver_lted to spe(_ad-up the eval- 7. SUMMARY OF RESULTS

uation of acoustic models during recognition. Techniques such as

the BBI algorithm [7] for mixtures of Gaussians (among others) The foliowing table summarizes results for the ACID/HNN based

are required to speed-up the recognition process of most speeclonnectionist acoustic models on the SWB and CH test sets.
recognition systems to make them useful in practical applications.

6.2. Speed vs. Accuracy

Interestingly, many speed-up techniques impose additional hierar- Decoding Word Error
chical structures on the set of acoustic models to be able to quickly bcond'f;ns — 3?1\,4\1/5 | 47(;('; | SWSJZ;
; : H iR ase , N0 adap 4% .00 4%
deterr_nl_ne a reduced §et of models Wlth hlgh probab_lllty: Why r_10t Thiterp LM, o adapt|| 33.3% | 43.0% 28.6%
organizing the acoustic model in a hierarchical fashion in the first base LV adapt R AR W
. H 5 s A% .6% 2%
place and benefit from this structure later on? Titerp LM, adapi 31.8% [ 43.3% 275%

46 T T T T
a4 ‘ ‘ ‘ ‘ 8. CONCLUSIONS
g 42 We experimentally demonstrated the viability of the ACID/HNN
T 40 framework for connectionist acoustic modeling in an LVCSR sys-
I_% tem, emphasizing the benefits resulting from the hierarchical struc-
g 38 ture. Due to discriminative training and an effective pruning tech-
= 36 nigue the presented NN/HNN hybrid recognizer for Switchboard
achieves a competitive word error rate of 34.5% with a factor 6
34 ; ; 3 3 speed-up in decoding time over the baseline system. Applying the
32 i i i i proposed method for unsupervised speaker adaptation to the base-
0 o Evalndd ool Loy 1000 line system, we achieve a word error rate of 31.8%.
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