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ABSTRACT

We present the ACID/HNN framework, a principled approach to
hierarchical connectionist acoustic modeling in large vocabulary
conversational speech recognition (LVCSR). Our approach con-
sists of an Agglomerative Clustering algorithm based on Informa-
tion Divergence (ACID) to automatically design and robustly esti-
mate Hierarchies of Neural Networks (HNN) for arbitrarily large
sets of context-dependent decision tree clustered HMM states. We
argue that a hierarchical approach is crucial in applying locally dis-
criminative connectionist models to the typically very large state
spaces observed in LVCSR systems. We evaluate the ACID/HNN
framework on the Switchboard conversational telephone speech
corpus. Furthermore, we focus on the benefits of the proposed
connectionist acoustic model, namely exploiting the hierarchical
structure for speaker adaptation and decoding speed-up algorithms.

1. INTRODUCTION

A few years back, several researchers (e.g. [1]) succesfully experi-
mented with neural networks as probabilistic estimators for hidden
Markov models. This approach is often termed hybrid NN/HMM
since the usual parametric mixture densities to model HMM ob-
servation probabilities are replaced by connectionist estimators of
posterior probabilities. The experiments indicated an advantage
of hybrid models in terms of discriminative power, required num-
ber of parameters and decoding speed. These results led to ex-
tensive research in connectionist acoustic modeling for HMM sys-
tems with promising and sometimes superior results compared to
conventional acoustic modeling. However, despite the success
in applying connectionist acoustic modeling to a wide range of
speech recognition tasks, current state-of-the-art systems for large
vocabulary conversational speech recognition (LVCSR) on cor-
pora such as Switchboard and Broadcast News almost entirely rely
on the conventional paradigm for acoustic modeling (with the ex-
ception of [2, 3]). What are the reasons for this preference towards
traditional acoustic models?
First, training of connectionist acoustic models usually is compu-
tationally very expensive. Compared to mixture density models,
training times often are orders of magnitude higher for neural net-
works. This fact is most obvious in LVCSR tasks, where the largest
amounts of training data are available. Furthermore, in contrast to
mixtures of Gaussians, connectionist acoustic models are mostly
trained with on-line stochastic gradient optimization techniques
that require hand-optimization of learning parameters such as gain
and momentum factor.
Second and much more critical, context modeling with traditional
continuous density HMMs has evolved significantly since the ad-

vent of hybrid NN/HMM models. The application of decision trees
to the clustering of tri-, quint- and even septphones recently led to
systems consisting of thousands of HMM states. Since modeling
of observation probabilities using mixture densities is independent
for each state, an increase in the number of states imposes no con-
ceptual problem. In contrast, connectionist acoustic models jointly
estimate posterior state probabilities and are much harder to scale
to larger systems. Often, context-modeling is avoided at all. Nev-
ertheless, significant improvements in recognition accuracy can be
gained through context modeling in both traditional and connec-
tionist acoustic modeling. Factoring of state posteriors according
to monophone and context identity can be applied to modularize
the connectionist estimation process into several networks [4, 6, 8].
However, the number of HMM states and therefore the level of
context-dependence that can be modeled with such an approach is
limited.
What is missing for connectionist LVCSR is a principled approach
that scales well to the large number of HMM states that are typ-
ically required to achieve competitive performance. This paper
presents the ACID/HNN [5] framework which aims at providing
such an approach. Viewing the estimation of posterior state prob-
abilities as a hierarchical process, an automatically clustered tree
structured ensemble of neural networks is applied to estimate state
posteriors . We give results on the Switchboard LVCSR corpus
and experimentally demonstrate how the hierarchical structure of
such an acoustic model can directly and efficiently be exploited for
purposes such as speaker adaptation and decoding speed-up.

2. HIERARCHICAL CONNECTIONIST MODELING

Connectionist acoustic modeling for hybrid NN/HMM system is
characterized by the estimation of posterior state probabilities us-
ing one or several neural networks. Integration of this model into
the HMM framework is justified by the application of Bayes rule

p(xjsi) =
p(sijx)

P (si)
p(x)

to get estimates of the state observation likelihoodp(xjsi) given
an acoustic feature vectorx. Usually, the termp(x) is neglected
because it is constant for all states and does not influence the out-
come of a Viterbi decoder. Therefore, scaled observation likeli-
hoods can be computed from state posteriors by dividing by state
priorsP (si).
For context-independent systems, the number of HMM states is
small enough to apply a single neural network to jointly estimate
the posterior state probabilities. However, introducing context-
dependence increases the number of states significantly and train-



ing a single neural network becomes prohibitive due to the large
amount of output nodes that would be necessary. A distributed rep-
resentation can be realized by factoring the posterior state proba-
bilities [4, 6, 8]. Typically, posterior state probabilities are fac-
tored according to monophone and context-identity. In contrast,
we present a more principled approach where factoring is guided
by an agglomerative clustering process.
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Figure 1: Hierarchical Decomposition of Posteriors

LetS denote the set of all (decision tree clustered) HMM statessk.
Consider we partitionS intoM disjoint and non-empty subsetsSi.
A particular statesk will now be a member ofS and exactly one of
the subsetsSi. Therefore, we can rewrite the posterior probability
of statesk as a joint probability of state and appropriate subsetSi
and factor it according to

p(skjx) = p(sk; Sijx) with sk 2 Si

= p(Sijx) p(skjSi;x)

Thus, the global task of discriminating between all the states inS
has been converted into (1) discriminating between subsetsSi and
(2) independently discriminating between the statessk contained
within each of the subsetsSi. Recursively repeating this process
yields a hierarchical tree-organized structure (Fig. 1). One of the
critical aspect of such a hierarchical decomposition of posteriors
is the strategy for partitioning state sets [10].

3. THE ACID ALGORITHM

ACID is an agglomerative clustering algorithm that is based on a
measure of the symmetric information divergence between sets of
HMM states. The first step in the ACID algorithm is to estimate the
parameters of a simple parametric model of the likelihood for each
state, in our case diagonal covariance Gaussians. For this kind of
model, the symmetric information divergence between two states
si andsj amounts to

d(si; sj) =
1

2

nX

k=1

(�2jk � �2ik) + (�2ik + �2jk)(�ik � �jk)
2

�2ik�
2

jk

where�2ik and�ik denote thek-th coefficient of the variance and
mean vectors of classsi, respectively. Making the simplifying
assumption of linearity of information divergence, we define the
following distance measure between sets of statesSk andSl

D(Sk; Sl) =
X

si2Sk

p(sijSk)
X

sj2Sl

p(sj jSl)d(si; sj)

wherep(sijSk) is the prior probability of statesi within the set
Sk. Initially, each state represents an individual set or cluster. Ag-
glomerative clustering then iteratively merges the pair of sets with
minimum distance according to the defined divergence measure.
Eventually, the algorithm terminates with a single cluster contain-
ing all states. The hierarchical structure that evolves during clus-
tering constitutes a suitable decomposition of the posterior state
probabilities.

4. HIERARCHIES OF NEURAL NETWORKS (HNN)

Fig. 2 gives a schematic overview of an HNN based acoustic
model. For the estimation of conditional posteriors in each node
we are using small 2-layer perceptrons.
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Figure 2: Hierarchy of Neural Networks

The outcome of the ACID clustering algorithm is a binary tree
structure. For a given number of HMM statesn, such a hierarchy
requires to trainn�1 neural networks. In order to get a more com-
pact HNN with less internal nodes (networks), we apply a greedy
bottom-up node merging algorithm with a constrained maximum
branching factorb (b � 10) to obtain the final HNN structure.
Such a strategy also has implications on the training of a hierarchy
of networks. At the root node, we have to train a network to ap-
proximate unconditional posteriors which can be accomplished by
training on the full training set. However, going further down the
tree, the available training data has to be distributed among chil-
dren nodes so that the corresponding networks learn to approxi-
mate the requiredconditionalposteriors. Therefore, networks at
the bottom of an HNN potentially receive very little training data.
By merging nodes in an HNN, we increase the amount of available
training data for the respective network.
After training has converged, the posterior probability of a specific
leaf/state in the HNN can be evaluated by traversing the tree from
root node to the leaf, evaluating the networks and multiplying the
conditional posteriors along the way.

5. EXPERIMENTS ON SWITCHBOARD

Switchboard is a large corpus of conversational American English
dialogs, recorded in telephone quality all over the US. It consists of
about 170 hours of speech. Switchboard is a comparably hard task,
current best systems achieve word error rates of 30-40% in NIST’s
annual evaluations on this corpus. For our experiments on Switch-
board, we integrated the ACID/HNN framework into the Janus-



RTk Switchboard 1997 recognizer [3] and replaced the mixtures
of Gaussians with the proposed hierarchical connectionist acous-
tic modeling part.

5.1. System Setup

Preprocessing consists of extracting an MFCC based feature vec-
tor every 10 ms. The final feature vector is computed by a trun-
cated LDA transform on the concatenation of MFCCs and their
respective deltas and delta-deltas. Vocal tract length normalization
and cepstral mean subtraction are used to extenuate speaker and
channel differences. For acoustic modeling, we use allophonic de-
cision trees to cluster 3-state HMMs. The overall model consists of
24000 distinct states. Using this model and mixtures of Gaussians
for observation probability estimation the Janus-RTk recognizer
scored tied first in NIST’s 1997 Switchboard evaluation.

5.2. Clustering and Training of HNNs

Applying the ACID/HNN framework to our system requires to de-
sign an HNN with 24000 leaves. Using the ACID algorithm, we
constructed an initial binary tree structure with depth 18. Node
merging withb = 10 was then applied, resulting in the final HNN
with depth 5 and a total of 4046 internal nodes. The following
table summarizes the structure of this HNN:

tree level # NN min/max children # params

1 1 10/10 4514
2 10 7/10 42560
3 77 4/10 167529
4 524 3/10 671748
5 3434 3/10 1957432

total 4046 – 2.8 M

For training the HNN, we used 87000 utterances or 60 million
training patterns. Accurate training labels were available from the
standard mixture of Gaussians Janus-RTk system. The parameters
of all 4046 networks in the HNN could be jointly estimated with
only 3 passes through the training data using stochastic gradient
ascent in log-likelihood. Fig. 3 shows the evolution of the log-
likelihood of cross-validation data during training.
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Figure 3: Typical HNN Training Curve

For testing our hierarchical acoustic model, we were using the
1997 Switchboard development test set, consisting of 30 seconds
speech from 40 speakers from the Switchboard (SWB) and 40
speaker from the CallHome (CH) corpus. Using an interpolated
trigram language model, our gender-independent 24k ACID/HNN
system achieves a word error rate of 33.3% on SWB and 43.9% on
CH.

6. EXPLOITING HIERARCHICAL STRUCTURE

The key advantage of the ACID/HNN framework is its hierarchical
structure. In the remainder, we will experimentally demonstrate
how algorithms such as speaker adaptation and decoding speed-up
can benefit from this structure.

6.1. Speaker Adaptation

Nowadays, techniques for adapting an acoustic model to specific
speakers and/or recording conditions such as MLLR [9] are widely
used and consistently improve performance. However, due to lim-
ited amounts of adaptation data these techniques usually require to
build additional structure, for instance in form of regression trees,
to cluster acoustically similar models so that unseen models can
be adapted too. In an ACID clustered HNN, there is no need for
additional structure since parameter sharing is inherently realized.
For instance, adaptation can consist of simply adapting the param-
eters of the root node, since this node is shared by all models and
will receive the highest amount of adaptation data.
For unsupervised speaker adaptation experiments on Switchboard,
we were decoding approximately 3 minutes of speech from each of
the 40 SWB test speakers. The resulting hypothesis were aligned
with the input data to get a labeled training set and filtered by a
confidence measure to discard regions that we suspect contain er-
rors. For each speaker, we adapt not only the network in the root
node but all those networks in the HNN that receive at least 1000
patterns in order to guarantee sufficient generalization. Adaptation
consists in backpropagating errors to the hidden layer and training
only the weights from input to hidden layer. Fig 4 gives results of
unsupervised adaptation for the individual speakers.
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Figure 4: Unsupervised Speaker Adaptation – 40 SWB speakers

As we expected, the number of adapted networks in the HNN in-
creases in proportion to the available adaptation data. However,
while the word error rate improves for most of the speakers, adap-
tation is observed to be counterproductive for some of the speakers



with a small amount of adaptation data. Overall, adaptation de-
creases word error rate by 5% relative to the unadapted baseline
HNN. When restricting adaptation to those speakers with more
than 8000 patterns of adaptation data, the word error rate drops
by 8% relative.

6.2. Speed vs. Accuracy

Many techniques have recently been invented to speed-up the eval-
uation of acoustic models during recognition. Techniques such as
the BBI algorithm [7] for mixtures of Gaussians (among others)
are required to speed-up the recognition process of most speech
recognition systems to make them useful in practical applications.
Interestingly, many speed-up techniques impose additional hierar-
chical structures on the set of acoustic models to be able to quickly
determine a reduced set of models with high probability. Why not
organizing the acoustic model in a hierarchical fashion in the first
place and benefit from this structure later on?
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Figure 5: Word Error vs. Acoustic Model Evaluation Cost

With an ACID clustered HNN, speeding up the evaluation of acous-
tic models can simply be done by pruning subtrees of the hierarchy
using a lower bound on the partial posterior probability. In the fol-
lowing experiments we were testing on 12 representative speakers
from SWB. Fig. 5 shows the cost of evaluating the HNN when
varying a negative logarithmic pruning thresholdpruneT .
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Figure 6: Word Error vs. Decoding Time

Obviously, this cost can be reduced by more than a factor of 10
without affecting the word error rate. However, pruning the acous-
tic model by imposing a threshold in our case overestimates the
posterior probabilities. This in turn slows down a Viterbi beam
search decoder such that we do not get the full speed-up of acous-
tic model evaluation in decoding. To avoid this, we artificially
lower the posterior probabilities of pruned models by multiplying
them with some factorc < 1. Fig. 6 demonstrates the implications

of this technique on both speed and accuracy for some values of
pruneT with varying parameterc (10�7 � c � 1).
Using such a simple technique (essentially one line of code), the
decoding time of the presented ACID/HNN based acoustic model
can be reduced from over 140xRT to about 24xRT without affect-
ing the word error rate at all. Allowing a word error rate of 45%,
the speed of the recognizer can be increased further to 14xRT.

7. SUMMARY OF RESULTS

The following table summarizes results for the ACID/HNN based
connectionist acoustic models on the SWB and CH test sets.

Decoding Word Error
Conditions SWB CH SWB+CH

base LM, no adapt 34.4% 47.8% 40.4%
interp LM, no adapt 33.3% 43.9% 38.6%

base LM, adapt 32.7% 44.6% 38.2%
interp LM, adapt 31.8% 43.3% 37.2%

8. CONCLUSIONS

We experimentally demonstrated the viability of the ACID/HNN
framework for connectionist acoustic modeling in an LVCSR sys-
tem, emphasizing the benefits resulting from the hierarchical struc-
ture. Due to discriminative training and an effective pruning tech-
nique the presented NN/HNN hybrid recognizer for Switchboard
achieves a competitive word error rate of 34.5% with a factor 6
speed-up in decoding time over the baseline system. Applying the
proposed method for unsupervised speaker adaptation to the base-
line system, we achieve a word error rate of 31.8%.
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