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ABSTRACT

The problem of the linear interpolationof nonstationarymul-
tidimensional processes with stationary increments is stud-
ied. The expressions of the interpolation filters and of the
estimation error are derived, which generalize the results of
the interpolation theory for stationary processes. Both finite
and infinite extent interpolation are considered. An applica-
tion to the interpolation of an underwater depth map is pre-
sented.

1. INTRODUCTION

Linear mean-square interpolation of wide-sense stationary
processes is a classical problem. When the number of sam-
ples is finite, the solution is obtained by solving the so-called
normal equations (see [2] for a survey and recent contribu-
tions on this subject). When the number of samples is infi-
nite, the solution is given by a simple expression in the fre-
quency domain. Nonstationary processes do not enter in this
framework and their statistical interpolation is a more diffi-
cult task. In this paper, we restrict our study to
nonstationary processes with stationary increments [5],
which are valuable models for many natural phenomena in
physics, hydrology, economics, turbulence and communica-
tions. Among the most famous processes in this class are the
fractional Brownian motions [3], for which approximate in-
terpolation methods based on midpoint displacement have
been developped [7]. In the general case of nonstationary
fields with stationary increments, we will introduce the so-
called structure function [1], which characterizes the second-
order statistical properties of these fields and will be used to
model them. By reconsidering the problem of finite extent
interpolation within this framework, we show that the solu-
tion is obtained by solving an unconstrained linear system
and its expression, as well as the mean-square estimation er-
ror, are given in terms of the structure function. In the in-
finite extent case, we show that the solution takes a simple
form by using the spectral density of the increments of the
field. An application to the interpolation of an underwater
depth map of the Var Canyon (France) is presented to illus-
trate these results.

The paper is organized as follows: in Section 2 we in-
troduce the model of nonstationary processes with station-
ary increments. Section 3 presents the interpolation meth-
ods in the cases of finite and infinite extent. In Section 4, we
present an application and conclude the paper.

2. NONSTATIONARY PROCESSES WITH
STATIONARY INCREMENTS

We first introduce the model of nonstationary signals with
stationary increments which is used in this work. With little
loss of generality, we shall assume throughout this paper that
all the considered processes are zero-mean.

A nonstationary real process fF (x); x 2 Sgwith S=
Z
n or S= Rn has stationary increments if the autocorrela-

tion function of its increments:

E f(F (x)� F (x��)) (F (x0)� F (x0 ��))g

only depends on the relative distance between x and x0 and
on the value of the increments �. One can easily show [4]
that this is equivalent to the fact that the variance of the incre-
ments does not depend on the origin. In other words, there
exists a function, which will be called the structure function
'F , such that'F (�) = varfF (x)� F (x��)g. The cor-
relation function of the process can be expressed as:

E fF (x)F (x0)g

=
1

2
['F (x) + 'F (x

0)� 'F (x � x0)] + E
�
F 2(0)

	
;

which implies that the structure functionandE
�
F 2(0)

	
com-

pletely characterizes a zero-mean Gaussian process. Note
that a stationary process is a special case of a process with
stationary increments as defined above. As can be expected,
the structure function of such a process is closely related to
its autocorrelation function �(�) = fF (x)F (x��)g, as
it is straightforwardto check that'(�) = 2 (�(0) � �(�)).
We can therefore introduce, as for the correlation function, a
biased empirical estimator of the structure function of a non-
stationary process:

b'F (�) =
1

N

X
x2D(�)

[F (x)� F (x��)]
2
; (1)



where N is the size of a finite sample field D and D(�) =
fx 2 D j x�� 2 Dg. We can also construct an unbiased
empirical estimator by normalizing by the effective number
of points in D(�).

The fractional Brownian motion [6], is obtained for
'F (�) = k�k2H, where H is the Hurst parameter of the
process. It is an isotropic process. Remark that, in this case,
the Fourier transform of the structure function exists only in
a distributional sense [4]. The introduction of the structure
function allows us to define anisotropic processes with sta-
tionary increments.

In the sequel, we will consider discrete time/space sig-
nals fF (k); k 2Zng.

3. INTERPOLATION METHOD

3.1. Finite extent interpolation

In this section, we realize the linear interpolation of the sig-
nal based on a finite number of samples, which may be lo-
calized on a regular or irregular grid.

Let F (n) be the value to be estimated and let S be a fi-
nite subset ofZnnf0gwhich defines a finite neighbourhood
fn� p; p 2 Sg of the point n. Remark that we do not im-
pose any constraint on the neihgbourhood, so that it can be
symmetric or not. The estimated value bF (n) will be:

bF (n) =
X
p2S

hn(p)F (n� p); (2)

where hn(p) are the coefficients of the filter to be optimized.
It can be easily shown that this filter is shift-invariant (i.e. its
coefficients do not depend on the positionn of the estimated
sample) if

P
p2S

hn(p) = 1: We can then denote the coef-
ficients by h(p). For an arbitrary positionp0 2 S, we have:
h(p0) = 1�

P
p2S0

h(p), whereS0 = Snfp0g. The inter-
polation coefficients are estimated by minimizing the mean
square estimation error:

"2 = E

8><
>:
2
4F (p0) �

X
p2S0

h(p) (F (p0) � F (p))

3
5
2
9>=
>; :

The problem therefore reduces to the linear mean square es-
timation of F (p0) from F (p0) � F (p); p 2 S0. The nor-
mal equations can be written, by using the structure function
'F of the process F : 8k 2 S0;

X
p2S0

['F (p0 � k) + 'F (p� p0)� 'F (p� k)]h(p)

= 'F (p0 � k) + 'F (p0) � 'F (k): (3)

The resulting mean-square error is

"2 =
X
p2S

hpE fF (p0)F (p)g =
1

2

�
'F (p0)

+
X
p2S

h(p)'F (p)�
X
p2S

h(p)'F (p� p0)

�
:

and it can be checked that it does not depend on p0.

3.2. Infinite extent interpolation

In this section, we study the case of the estimation of the
missing 1D or 2D data from an infinite number of observa-
tions. We suppose data spaced on a regular grid and we are
looking for the values of the process corresponding to a finer
sampling.

3.2.1. 1D case

The values at missing points can be estimated by:

bF (nM + p) =
LX

k=�L

h(kM )F ((n� k)M );

where p 2 f1; : : : ;M � 1g. Let us denote the unknown val-
uesF (nM ) byA(n). The condition to have a shift-invariant
interpolation filter is, as previously,

PL

k=�L h(kM ) = 1.
Then, it can be easily shown that the interpolationof the non-
stationary process with stationary increments reduces to a
linear filtering of its increments�A(n) = A(n)�A(n�1):

bF (nM + p) = A(n) +
LX

k=�L

g(k)�A(n� k);

where g is the impulse response of a filter to be optimized
in the mean-square sense. Let us now assume that L!1.
By denotingB(n) = F (nM + p)�F (nM ), the frequency
response of the filter is given by:

G(!) =
SB�A(!)

S�A(!)
;

whereS�A(!) is the spectral densityof the increment process
and SB�A(!) is the inter-spectral density of the
processes B and �A. One can show that these spectral den-
sities are related to the structure function 'F as follows:

S�A(!) = �
1

2

��1� ej!
��2 b'A(!);

b'A(!) = 1

M

M�1X
k=0

b'F
�
! + 2k�

M

�
(4)



and

SB�A(!) = �
1

2M

M�1X
k=0

�
ejp

!+2k�

M � 1
�

�
�
1� ej!

� b'F �! + 2k�

M

�
:

Note that even when b'F (!) exists only in a distributional
sense, the expression

�
1� ej!

� b'F (!) corresponds to a well-
defined function.

With these results, the mean-square interpolation error
is:

"2 = '(p) �
1

2�

Z �

��

jSB�A(!)j
2

S�A(!)
d!:

3.2.2. 2D case

The interpolated values are now given by:

bF (nM + p;mM + q)

=
LX

k=�L

LX
l=�L

h(kM; lM )F ((n� k)M; (m � l)M )

where (p; q) 2 f1; : : : ;M � 1g2. As previously,
F (nM;mM ) is designated by A(n;m).

Let us denote the increments of the process in thex (resp.
y) direction by �A1;0(n;m) = A(n;m) � A(n � 1;m)
(resp. �A0;1(n;m) = A(n;m) � A(n;m � 1)). We also
define the increment of order (1; 1) by

�A1;1(n;m) = A(n;m) �A(n � 1;m)� A(n;m� 1)

+ A(n� 1;m� 1):

As the field F (n;m) has stationary increments, all the above
three processes are stationary. Moreover, one can show that
the linear interpolationof the nonstationaryprocessF (n;m)
can be expressed as a linear combination of A(n;m) and its
increments of order (1; 0), (0; 1) and (1; 1). Let us now as-
sume that L ! 1. Since the increment of order (1; 1) can
be written as a linear combination of the increments of order
(1; 0) or (0; 1):

�A1;1(n;m) = �A1;0(n;m) ��A1;0(n;m� 1)

= �A0;1(n;m) ��A0;1(n� 1;m);

the interpolated value at the position (nM + p;mM + q)
takes the following form:

bF (nM + p;mM + q) = A(n;m)

+
1X

k=�1

1X
l=�1

g1;0k;l�A
1;0(n� k;m� l)

+
1X

k=�1

1X
l=�1

g0;1k;l�A
0;1(n� k;m� l);

where g1;0k;l ; g
0;1
k;l are the impulse responses of linear filters

to be optimized.
The minimizationof the mean square error "2 corresponds

to the linear estimation of B(n;m) = F (nM + p;mM +
q)�F (nM;mM ) from the increments�A1;0(n�k;m�l)
and �A0;1(n � k;m � l). The spectral and inter-spectral
densities of these fields can easily be deduced from their cor-
relation functions and one can verify that

S�A1;0 (!x; !y)S�A0;1 (!x; !y) = jS�A1;0�A0;1 (!x; !y)j
2
;

which means that the estimation problem has an infinitenum-
ber of solutions. (This result is not surprising, since there
are several ways of reconstructing A(n � p;m � q) from
A(n;m) and its increments of order (1; 0) and (0; 1).) The
frequency response of the filters can be chosen as follows:

G�A1;0 (!x; !y) =
SB�A1;0 (!x; !y)

S�A1;0 (!x; !y)

G�A0;1 (!x; !y) = 0:

The mean-square error reads then

"2 = '(p; q)�
1

4�2

Z �

��

Z �

��

jSB�A1;0 (!x; !y)j
2

S�A1;0 (!x; !y)
d!xd!y;

where

SB�A1;0 (!x; !y)

= �
1

2M2

M�1X
k=0

M�1X
l=0

�
ejp

!x+2k�

M ejq
!y+2l�

M � 1
�

�
�
1� ej!x

� b'F �!x + 2k�

M
;
!y + 2l�

M

�

S�A1;0 (!x; !y) = �
1

2

��1� e�j!x
��2 b'A (!x; !y) ;

where b'A (!x; !y) is the Fourier transform of the structure
function of the field A(n;m). This Fourier transform is re-
lated to b'F (!x; !y) by a formula similar to (4).

4. APPLICATION TO THE SEA-BED MODELING

As an application, we have considered an underwater depth
map (271 � 271 points) of the Var Canyon (France) (see
Fig. 1). The structure function was estimated from real data,
by using Equation (1). It is represented in Fig. 2. In order
to model and interpolate this map, we have chosen the fol-
lowing parametric model for the structure function:

'(� cos �; � sin �) = a0

� �
R

��0
jcos (� � �0)j


0

+ a1

� �
R

��1
jsin (� � �0)j


1 ; � � 0;



Figure 1: Original data of the Var Canyon.
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Figure 2: Structure function estimated from the real data.

where R is the interpolation step, here equal to 4 (three new
points were intercalated between any two points on the orig-
inal grid). This model was fitted to the structure function
estimated from the real data and the parameters have been
computed by a mean-square optimization technique. The re-
sulting values of the parameters are: a0 = 2:7937 � 103,
a1 = 463:6798, �0 = 1:5, �1 = 1:7020, 
0 = 1:9430,

1 = 1:5693, �0 = �=4. It is worth noting that such a field
is anisotropic and not exactly self-similar (for a self-similar
field �0 would be equal to �1 [4]). The structure function
corresponding to this model is represented in Fig. 3. We re-

0
5

10
15

20

0

5

10

15

20
0

2

4

6

8

x 10
4

Figure 3: Modelled structure function.

mark a very good fit between the model and the data. The re-
sulting interpolated map (1084�1084points) was computed
according to Equation (2) and is represented in Fig. 4. Note
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Figure 4: Interpolated map.

that these interpolation results may also be useful to provide
low-complexitymethods for synthesizing fields with station-
ary increments.
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