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ABSTRACT

The problem of thelinear interpol ationof nonstationary mul -
tidimensional processes with stationary increments is stud-
ied. The expressions of the interpolation filters and of the
estimation error are derived, which generalize the results of
theinterpolationtheory for stationary processes. Both finite
and infinite extent interpolation are considered. An applica
tion to the interpolation of an underwater depth map is pre-
sented.

1. INTRODUCTION

Linear mean-square interpolation of wide-sense stationary
processesisaclassica problem. When the number of sam-
plesisfinite, the solutionisobtained by solvingthe so-called
normal equations (see [2] for a survey and recent contribu-
tions on this subject). When the number of samplesisinfi-
nite, the solutionis given by a simple expression in the fre-
guency domain. Nonstationary processes do not enter inthis
framework and their statistical interpolationis a more diffi-
cult task. In this paper, we restrict our study to
nonstationary processes with stationary increments [5],
which are valuable models for many natural phenomenain
physics, hydrol ogy, economics, turbulence and communice-
tions. Among the most famous processesinthisclassarethe
fractiona Brownian motions[3], for which approximatein-
terpolation methods based on midpoint displacement have
been developped [7]. In the genera case of nonstationary
fields with stationary increments, we will introduce the so-
called structurefunction[1], which characterizes the second-
order statistical properties of these fields and will be used to
model them. By reconsidering the problem of finite extent
interpolation within this framework, we show that the solu-
tion is obtained by solving an unconstrained linear system
and itsexpression, aswell as the mean-square estimation er-
ror, are given in terms of the structure function. In thein-
finite extent case, we show that the solution takes a simple
form by using the spectral density of the increments of the
field. An application to the interpolation of an underwater
depth map of the Var Canyon (France) is presented to illus-
trate these results.
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The paper is organized as follows: in Section 2 we in-
troduce the model of nonstationary processes with station-
ary increments. Section 3 presents the interpolation meth-
odsin the cases of finiteand infiniteextent. In Section 4, we
present an application and conclude the paper.

2. NONSTATIONARY PROCESSESWITH
STATIONARY INCREMENTS

We first introduce the model of nonstationary signals with
stationary increments which isused in thiswork. With little
lossof generality, we shall assume throughout this paper that
all the considered processes are zero-mean.

A nongtationary rea process {F(x), x € S} withS =
Z™or S = R™ has stationary increments if the autocorrela
tion function of itsincrements:

E{(F(x) - F(x = A)) (F(x) - F(x' = A))}

only depends on the rel ative distance between x and x’ and
on the value of the increments A. One can easily show [4]
that thisisequivalent to thefact that thevariance of theincre-
ments does not depend on the origin. In other words, there
existsafunction, which will be called the structure function
¢or,suchthat op(A) = var {F(x) — F'(x — A)}. Thecor-
relation function of the process can be expressed as:

E{F(x)F(x')}

= L ler(x) +or(x) — pr(x — X )]+ B{FX(0)}
whichimpliesthat thestructurefunctionand E { F%(0) } com-
pletely characterizes a zero-mean Gaussian process. Note
that a stationary processis a specia case of a process with
stationary increments as defined above. As can be expected,
the structure function of such aprocessis closely related to
itsautocorrelation function I'(A) = {F(x)F(x — A)}, as
itisstraightforwardtocheck that p(A) = 2 (T'(0) — T'(A)).
We can thereforeintroduce, asfor the correlation function, a
biased empirical estimator of the structurefunction of anon-
stationary process.



where N isthe size of afinite sample field D and P(A) =
{x €D |x— A eD}. Wecan aso construct an unbiased
empirical estimator by normalizing by the effective number
of pointsin D(A).

The fractional Brownian motion [6], is obtained for
er(A) = ||Al|*H, where H is the Hurst parameter of the
process. Itisan isotropic process. Remark that, in this case,
the Fourier transform of the structurefunction existsonly in
adistributiona sense [4]. The introduction of the structure
function alows us to define anisotropic processes with sta-
tionary increments.

In the sequel, we will consider discrete time/space sig-
nas{F k), k € Z"}.

3. INTERPOLATION METHOD

3.1. Finiteextent interpolation

In this section, we realize thelinear interpolation of the sig-
nal based on afinite number of samples, which may be lo-
calized on aregular or irregular grid.

Let F'(n) be the value to be estimated and let S be a fi-
nitesubset of Z™\ {0} which defines afinite neighbourhood
{n — p, p € §} of thepoint n. Remark that we do not im-
pose any constraint on the neihgbourhood, so that it can be
symmetric or not. The estimated value F'(n) will be:

=Y hu(p)F(n—p), 2

pES

where ., (p) are the coefficients of thefilter to be optimized.
It can be easily shown that thisfilter isshift-invariant (i.e. its
coefficients do not depend on the positionn of the estimated
sample) if 5° s hn(p) = 1. We can then denote the coef-
ficientsby h(p). For an arbitrary positionp, € S, we have:
h(po) = 1=>_es, h(P), WhereSy = S\{po}. Theinter-
polation coefficients are estimated by minimizing the mean
square estimation error:

2 =FK

— > h(p)(F(po) — F(p))

P€ESo

The problem therefore reduces to the linear mean square es-
timation of F(po) from F(po) — F(p), p € So. Thenor-
mal equationscan bewritten, by using the structurefunction
p of theprocess I': Yk € Sy,

> [pr(po —k) + ¢r(p — po) — pr(p — k)] h(p)

= ¢r(po — k) + ¢r(po) — ¢r(k). 3

The resulting mean-square error is
1

+Y_ h(p)er(p) = D h(p)er(p - Po)}

pPES PES

and it can be checked that it does not depend on py.

3.2. Infinite extent interpolation

In this section, we study the case of the estimation of the
missing 1D or 2D data from an infinite number of observa-
tions. We suppose data spaced on aregular grid and we are
looking for the val ues of the process correspondingto afiner
sampling.

3.2.1. 1D case

The values at missing points can be estimated by:

nM—I—p

thM — kM),

k=—L

wherep € {1,..., M — 1}. Letusdenctetheunknownval-
ues F'(nM ) by A(n). Theconditionto have ashift-invariant
interpolation filter is, as previously, S°5__, h(kM) = 1.
Then, it can beeasily shown that theinterpolationof thenon-
stationary process with stationary increments reduces to a
linear filtering of itsincrementsA A(n) = A(n)—A(n—1):

L

=A(n)+ > g(k)AA(n — k),

k=—L

F(nM + p)

where ¢ is the impulse response of a filter to be optimized
in the mean-square sense. Let us now assume that . — co.
By denoting B(n) = F(nM + p) — F(nM), thefrequency
response of thefilter isgiven by:

Spaa(w)

Gw) = Saale) |

whereSa 4 (w) isthespectral density of theincrement process
and Spaa(w) is the inter-spectral density of the
processes B and A A. One can show that these spectral den-
sities are related to the structure function ¢ » asfollows:

1 ; ~
Saa(w) = =5 [1= e[ galw),

M-1
o i B (=)
k=0




and
1 M-1
(e]p wi2k7r )

k=0
(1= ) g (SE2T)

Note that even when ¢r(w) exists only in a distributional
sense, theexpression (1 — ¢/“) ¢ (w) correspondstoawel -
defined function.

With these results, the mean-square interpolation error

ezzso(p)—i/ﬂ %dw.

Seaal( i

3.22. 2D case
The interpolated values are now given by:

ﬁ(nM—i—p,mM—l—q)

- ZL: ZL: h(kM,IM)F((n — k)M, (m — [)M)

k=—LIl=-L

where (p,q) € {1,...,M—1}".
F(nM,mM) isdesignated by A(n,m).

Let usdenotetheincrementsof theprocessinthez (resp.
y) direction by AAYO(n,m) = A(n,m) — A(n — 1,m)
(resp. AA%Y(n,m) = A(n,m) — A(n,m — 1)). Weadso
define theincrement of order (1, 1) by

AAY (n,m)

As previoudly,

=A(n,m)—An—1,m)—
+A(n—1,m—1).

Aln,m—1)

Asthefield F'(n, m) hasstationary increments, all the above
three processes are stationary. Moreover, one can show that
thelinear interpolationof the nonstationary process £'(n, m)
can be expressed as alinear combination of A(rn,m) andits
increments of order (1,0), (0,1) and (1,1). Let usnow as-
sumethat L — oo. Sincetheincrement of order (1, 1) can
bewritten asalinear combination of theincrements of order
(1,0)o0r(0,1):

AAY (n,m) = AAY (n,m) —
= AA% (n,m) —

AAY (n,m —1)
AAY (n —1,m),

the interpolated value at the position (n M + p, mM + q)
takes the following form:

ﬁ(nM—i—p,mM—l—q)

+ i i g,y?AAlvO(n—k,m—l)

k=—oc0l=—00

= A(n,m)

oQ oQ

+ Y D g AAY (n—k,m = 1),

k=—oc0l=—00

where g ,, 9y , are the impul se responses of linear filters
to be opt|m| zed.
The minimization of themean squareerror 2 corresponds

to the linear estimation of B(n, m) = F(nM + p,mM +
q)— F(nM, mM) fromtheincrements A A (n—k, m—1)
and AA%L(n — k,m — I). The spectral and inter-spectral
densitiesof thesefields can easily be deduced fromtheir cor-
relation functions and one can verify that

SAAI,D (wx,wy)SAAu,l (wx,wy) = |SAA1,DAAD,1 (wx,wy)|2,

which meansthat theestimation problemhas an infinitenum-
ber of solutions. (This result is not surprising, since there
are several ways of reconstructing A(n — p, m — ¢) from
A(n,m) and itsincrements of order (1,0) and (0, 1).) The
frequency response of thefilters can be chosen asfollows:

SB AALO (wx,wy)
SAAl,D (wx,wy)

GAAD,I (wx,wy) =0.

GAAl,D (wx,wy) =

The mean-square error reads then

2
SBAAID (.d W
62 2/ / | T y)| dwxdwy,
Cdn? ) Saaro (we,wy)

where

SB AALO (wx,wy)

M-1M-1 . wz+2k7r . wy+2l7r
= 2M2 Z Z ( Moo )
k=0 (=0
; . « + 2k 21
(e g (28 f)

1 w2~
Saato (wx,wy) = —5 |1 —e/ ”| ©waA (wx,wy),
where &4 (w,,wy) isthe Fourier transform of the structure
function of the field A(n, m). ThisFourier transformisre-
lated to ¢ (ws,wy) by aformulasimilar to (4).

4. APPLICATION TO THE SEA-BED MODELING

Asan application, we have considered an underwater depth
map (271 x 271 points) of the Var Canyon (France) (see
Fig. 1). The structurefunctionwas estimated fromreal data,
by using Equation (1). It isrepresented in Fig. 2. In order
to model and interpolate this map, we have chosen the fol-
lowing parametric model for the structure function:

Bo
p(pcos b, psind) = ag (%) |cos (6 — 0g)|™

81
ta (%) Isin (0 — 00)|", p > 0,



Figure 1. Original dataof the Var Canyon.

Figure 2: Structure function estimated from thered data.

where R istheinterpolation step, here equal to 4 (three new
pointswereintercal ated between any two pointson the orig-
inal grid). This model was fitted to the structure function
estimated from the real data and the parameters have been
computed by amean-square optimi zationtechnique. There-
sulting values of the parameters are; ap = 2.7937 x 103,
a; = 463.6798, fp = 1.5, 81 = 1.7020, v = 1.9430,
v1 = 1.5693, 6, = = /4. It isworth noting that such afield
isanisotropic and not exactly self-similar (for aself-similar
field 5, would be equal to 3, [4]). The structure function
corresponding to thismodel isrepresented in Fig. 3. Were-

Figure 3: Modelled structure function.

mark avery good fit between the model and thedata. There-
sultinginterpol ated map (1084 x 1084 points) was computed
according to Equation (2) and isrepresented in Fig. 4. Note

100 200 300 400 500 600 700 800 900 1000

Figure 4. Interpolated map.

that these interpolation results may also be useful to provide
low-complexity methodsfor synthesizing fiel dswith station-
ary increments.
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