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ABSTRACT

This paper presents a new neural solution for multitarget tracking
based on a maximum likelihood approach. In the radar tracking
context, neural networks are generally used to decide which plot
can be assigned to each predetected track, in taking into account
only the plots received during the last scan. A neural approach is
proposed to determine which particular combinations of the plots
received during the k latest scans are likely to represent true target
tracks. This data association problem is viewed as a multiple hy-
pothesis test that can be solved in maximizing a likelihood func-
tion by means of an Hopfield neural network. Some simulation
results are presented to illustrate the behaviour of the proposed
neural tracking solution.

1. INTRODUCTION

The multitarget tracking problem consists in detecting the objects
situated in the observation space and estimating their trajectory.
During each scan, a radar sensor delivers a set of measurements,
called plots. Each object of the observation space doesn' t gener-
ate an echo everytime due to non-detections, and each plot isn' t
associated with a target everytime due to false alarms.
Several approaches have been proposed in theliterature to solve
the tracking problem in using neural networks: in [1, 2, 3] an Hop-
field model decides which plot to assign to each predetected track,
by minimizing the sum of the plot-to-track distances. Schmidlin
[4], and Winter [5] proposed neural methods to minimize a new
assignment criterion. In [6, 7] the neural architecture is the same,
but the decisions are made so that the likelihood of each associ-
ation is optimized. All these approaches consider only plots re-
ceived during the last scan; the optimization process then reduces
to the well known assignment problem. For sufficiently small size
problems (number of tracks less than 50), it can be solved by an
optimal method like the Munkres algorithm [8] in a reasonable
computional time, so that the use of neural networks is not justi-
fied in these cases.
In this paper, the tracking problem is tackled from a more gen-
eral point of view, as a partitioning of the plots received during
k scans, into sets of tracks and sets of false alarms. The solution
is obtained by maximizing the likelihood of the hypotheses relat-
ing to this partitioning. The corresponding assignment problem is
NP-complete. Thus, the optimal solution can not be reached in an

acceptable calculation time, and the use of neural networks, which
fastly converge to near optimal solutions, is of a great interest in
this case.
In the next section, we describe the likelihood function to be opti-
mized. This likelihood is derived fom models introduced by Sittler
[9] Morefield [10] and Blackman [11]. Section 3 proposes a solu-
tion to maximize the likelihood function by means of an Hopfield
neural network. Some simulation results are presented in section
4 and concluding remarks are made in section 5.

2. THE LIKELIHOOD FUNCTION

To determine the likelihood function associated with a partitioning
of the observations received during k scans, into sets of tracks and
false alarms, several models have to be first defined. Assuming
that new targets randomly arise within the scan volumeV , with a
density�N , the probabilityPN thatnN new targets appear innN
small cells of volumev, during the k latest scans, can be modeled
by [12]:

PN(nNk ) = (�Nv)
nNk e

��N kV (1)

Similarly, the probabilityPF that exactlynFk false alarms arise is:

PF (nFk ) = (�F v)
nFk e

��F kV (2)

where�F is the density of false alarms. Given that a true target
was detected, the conditional track length probability also need to
be modelized. The following expression was first introduced by
Sittler [9] in the ship tracking context, and derived by Blackman
[11] for a general purpose. Two cases must be distinguished:

� if track i is still present at scan k, the probability that it ends
with a length greater thanTLi is given by:

PTLk (TLi) = e
�
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�
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whereEL is the expected track length in scans.

� if track i terminated with lengthTLi:
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The probabilityPDSi of a particular sequence of detection for the
tracki with lengthTLi is as follows:

PDSi = P
NUi
d (1� Pd)

TLi�NUi (5)

whereNUi is the number of updates for tracki, i.e. the num-
ber of plots affected to tracki after initial detection, and Pd is
the probability of detection. Foreach plot assignment to a track,
the likelihood is linked to the prediction error statistics. Thus, the
probability of the tracki havingNUi residual errors withinNUi
cells of volume v is:

PASi = v
NUi

NUiY
j=1

fi (�ij) (6)

wherefi (�ij) is the probability density of the residual�ij for the
j-th observation of the tracki, at scan k.With the Gaussian assump-
tion, fi (�ij) is given by:

fi (�ij) =
1

(2�)M=2
p
j Ci j

e
�

�tijC
�1

i
�ij

2 (7)

wherej Ci j is the determinant of the residual covariance matrix
Ci associated with tracki, andM is the measurement dimension.
According to [11], combining equations (1) to (7) leads to define
the following composite probabilityLk associated with any par-
ticular observation partitioninghypothesis given k scans:

Lk = PN(nNk )PF (nFk)
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whereTN is the number of tracks that satisfy the constraint that at
most one track is associated to each plot, and:

A = v
NP
e
�k(�N+�F )V (10)

with:

NP = nNk + nFk +
TNX
i=1

NUi (11)

We can notice thatNP is a constant, and equals the total number
of plots received during thek latest scans, so thatA is a constant
factor. The search for the partitioning that maximizesLk leads to a
NP-complete problem. In real-time applications, the search for the
optimal solution may be too time consuming. This is the reason
why neural networks represent an interesting alternative. They do
not guarantee to provide the optimal solution but they generally
converge to a near optimal solution, in a reasonable computation
time. Such a solution is developed in the next section.

3. NEURAL OPTIMIZATION

Using equation (11), the expression (9) of the likelihhod function
Lk can be rewritten as follows:

Lk=A�
nNP
F
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nNP
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whereqi represents the contribution of tracki to the likelihoodLk :

qi =
�N

�F
PTLk(TLi)PDSi

NUiY
j=1

1

�F
fi (�ij) (14)

Taking the logarithm of (13) and omitting the constant term, max-
imisation ofLk is strictly equivalent to maximisation ofL0k:

L
0

k =
TNX
i=1

ln qi (15)

Now, we consider the set of all the possible tracks that can be con-
structed using the observations of thek latest scans; for each of
them, we compute their likelihoodqi. The maximization of the
partitioning likelihood is then equivalent to the search of the tracks
that maximizeJ :

J =
TTX
i=1

ln qi (16)

whereTT represents the number of all the possible tracks satisfy-
ing the constraint that a plot is assigned to at most one track. To
each possible tracki, we associate a binary vector i defined as:

 i (j) =

�
1 if plot j is used by tracki
0 otherwise

; j = 1::NP (17)

The constraint can be expressed as follows:

TTX
i1=1

TTX
i2 = 1

i2 6= i1

 
t
i1 i2 (18)

The maximization of the partitioning likelihood can then be re-
duced to the minimization of the following energy:

E = �
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whereB is a positive factor which determines the relative influ-
ence of the constraint, and:

mq = min
i

(ln qi) (20)

This energy can be compared with the energy of the Hopfield
neural network [13]:
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wherexl is the state of the l-th neuron,f (xl) is its output, andf
is the sigmoid function:

f (x) =
1

1 + e�px
(22)

p being a constant parameter.Il is the input of the neuronl and
Wlm is the weight of the connection between neuronl and neuron
m. The neuron update rule that ensures the minimization ofEH is
given by:

dxl

dt
= �xl + Il �

X
m

Wlmf (xm) (23)

The last term of equation (21) can be neglected for a sufficiently
large value ofp. Thus, we can define a neural network that mini-
mizes (19) by identifying the weights and the inputs. We obtain:

Il =
ln qi �mq

mq
(24)

Wml = B (1� �lm) tl m (25)

where�lm is the Kronecker symbol:

�lm =

�
1 if l =m

0 otherwise
(26)

The neuron update rule (23) becomes:

dxl
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mq � ln ql
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4. SIMULATIONS RESULTS

In this paragraph, we present some simulation results to illustrate
the behaviour of the proposed neural traching method. The per-
formance of this method are compared with those obtained with
two classical traching methods : the nearest neighbor (NN) method
[11] and the Joint Probabilistic Data Association (JPDA) filter [15].
Figure 1 shows a scenario with nine simulated target trajectories.
The corresponding plots were generated during150 scans for a
radar sensor characterized by measurement noises, with120m of
standard deviation in distance,4mrd of standard deviation in az-
imuth, with a detection probability of0:85 and a range of150km.
To decrease the number of potential tracks to form, two gating
techniques are applied. First, a plotjis associated to a tracki only
if [14]:

�
t
ijC

�1
i �ij � � (28)

where� is determined by means of a Chi-square table. Then, if
assignment is accepted, and if the likelihood of the formed track is
less than a pre-specified threshold, the track is deleted.
Figures 2, 3 and 4 show the tracking results using respectively the
NN method, the JPDA Filter and the proposed neural solution.
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Figure 1: Simulated target trajectories.
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Figure 2: Tracking results using the Nearest-Neighbor method.

We can conclude that the JPDA Filter and the neural method allow
to correctly track the targets5; 6; 8 and9 when they are crossing,
while the NN method mistakes the targets5 and8. We can also
notice that the NN method decides incorrect associations for the
targets1 and2 that are very close each other, which leads to sev-
eral track breaks. The JPDA Filter also has some difficulties for



tracking these targets: it can not distinguish that there are two sep-
arate targets, so it merges them.

40 Km

Figure 3: Tracking results using the JPDA Filter.
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Figure 4: Tracking results using the new neural network based
approach.

5. CONCLUSION

In this paper, we have described a new neural tracking method,
based on the optimization of a likelihood function. We have shown
that a neural network, that fastly converges to near optimal solu-
tions, can solve such a combinatorial optimization problem.
Simulation results have been presented to illustrate the behaviour
of the proposed tracking method and to compare it with two clas-
sical tracking methods (NN method and JPDA filter). The best

tracking results were obtained with the neural method, specially
when targets are crossing or close each other.
Finally, it is important to notice that the proposed method allows
to simultaneously solve the track initiation and maintenance prob-
lems as a global optimization problem, which is not the case with
classical traching methods.
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