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ABSTRACT

This paper describes some extensions to the language model
(LM) look-ahead pruning approach which is integrated into the
time-synchronous beam search algorithm. The search algorithm
is based on a lexical prefix tree in combination with a word-
conditioned dynamic search space organization for handling
trigram language models in a one-pass strategy. In particular,
we study several LM look-ahead pruning techniques. Further, we
improve the efficiency of this look-ahead technique by exploiting
subtree dominance. This method avoids the computation of
redundant subtrees within the copies of the lexical prefix tree and
thus reduces the memory requirements of the search algorithm.
In addition, we present a pruning criterion depending on the state
index. The experimental results on the20 000-word NAB’94
task (ARPA North American Business Corpus) indicate that the
computational effort can be reduced to4 times real time on a
ALPHA 5000 PC without a significant loss in the recognition
accuracy.

1. INTRODUCTION

The paper presents an efficient one-pass time-synchronous beam
search strategy for handling trigram language models, where
the search algorithm uses word-conditioned copies of the tree-
organized pronunciation lexicon (lexical prefix tree) [3, 4].
The novel contributions of this paper are: We describe the
incorporation of an exact trigram (LM) look-ahead technique into
the acoustic pruning process of the word conditioned one-pass
search algorithm and compare this look-ahead technique with the
use of two approximative LM look-ahead techniques, namely a
bigram LM and a unigram LM look-ahead. The efficiency of this
technique can be further refined by using the so-called ‘subtree
dominance’ (SD) criterion [1]. The idea of this enhancement
is to eliminate redundant calculations of subtrees which are due
to the word-conditioned tree copy concept. To this purpose, we
compute to the factored LM probabilities the so-called factored
SD probabilities in order to compare subtrees of different tree
copies. This enables us to prune worse scored subtrees without
producing search errors. The factorization process of the LM and
SD probabilities is only performed for active tree copies using a
dynamic programming scheme described in [5]. In addition, we
introduce a pruning criterion which depends on the state index.
For each state of the lexical prefix tree, we only expand state
hypotheses with a score relatively close to best state hypotheses
corresponding to same state index.

The organization of this paper is as follows. In Section

2, we review the one-pass beam search using a lexical prefix
tree lexicon in combination with a trigram language model. In
Section 3, an improved LM look-ahead pruning technique will be
presented. In particular, we describe the exact trigram LM look-
ahead pruning and introduce the subtree dominance criterion. The
state dependent pruning criterion will be described in Section 4.
In Section 5, we give experimental results on the NAB’94 20 000-
word task.

2. LEXICAL TREE SEARCH METHOD

In this section, we give a brief description of the word-conditioned
tree search algorithm in the context of handling trigram language
models. For a lexical prefix tree, we have to take into
account that for a trigram the language model probabilities are
conditioned on the immediatetwo predecessor words rather than
on one predecessor word in the bigram case [3]. Therefore,
the incorporation of a trigram language model into the word
conditioned tree search method requires a separate copy of
the lexical prefix tree for each two-word history(u; v). The
formulation of the DP search algorithm is based on the two
quantitiesQuv(t; s) and Buv(t; s) depending on the two-word
history(u; v) as introduced in [3, 4]:

Quv(t; s) := overall score of the best path up to timet that ends
in states of the lexical tree for the two-word history(u; v).

Buv(t; s) := starting time of the best path up to timet that ends
in states of the lexical tree for the two-word history(u; v).

Within a tree the usual dynamic programming can be expressed as:

Quv(t; s) = max
�

f q(xt; sj�) �Quv(t� 1; �) g

Buv(t; s) = Buv(t� 1; �maxuv (t; s)) :

�maxuv (t; s) is the optimum predecessor state for the hypothesis
(t; s) of the two-word history(u; v) and q(xt; sj�) denotes the
product of transition and emission probabilities. To perform the
recombination across the word boundaries, we use the quantity:

H(v;w; t) := max
u

f p(wju; v) �Quv(t; Sw) g ;

wherep(wju; v) is the conditional trigram probability for the word
triple (u; v; w) and whereSw is the terminal state of wordw in the
lexical prefix tree. To initialize the new tree start-up hypotheses,
we have to pass on the score and the time index before processing
the hypotheses for time framet:

Quv(t� 1; s = 0) = H(u; v; t� 1)

Buv(t� 1; s = 0) = t� 1 ;



where we have introduced the fictitious states = 0 for
initialization. The management of the dynamic search space is
based on a list organization [2] refined by a hashing approach as
described in [4]. The standard pruning approach of the lexical tree
search method is performed every10-ms time frame and consists
of three pruning steps: acoustic pruning, language model pruning
and histogram pruning. In addition, an approximative language
model look-ahead, based on a unigram, is integrated into the
standard pruning approach [7]. To reduce the computational cost
of the log-likehood calculations, a fast log-likelihood calculation
method is used [6].

3. IMPROVED LM LOOK-AHEAD

The aim of the LM look-ahead technique is the incorporation of the
language model probabilities as early as possible into the search
process so that tighter pruning thresholds in the acoustic pruning
and a lower number of maximum state hypotheses per time frame
in the histogram pruning can be used. In the following we
present some extensions to the LM look-ahead pruning technique
presented in [5]. The characteristic features of this technique can
be summarized as follows: The calculation of the LM factored
probabilities is based on a compressed lexical prefix tree (LM
look-ahead tree) and on a dynamic programming procedure which
allows us to compute the LM factored probabilities only for
active treeson demand. The so-called LM look-ahead tree only
represents phoneme arcs with more than one successor arc in the
lexical prefix tree. For practical aspects, we limit the LM look-
ahead tree to the first three arc generations of the lexical prefix
tree. However, this LM look-ahead technique was only applied
in the context of the word conditioned tree search method using
a bigram language model [5] so that an extension of handling
trigram language models is needed.

3.1. Trigram LM Look-Ahead

For a trigram language model, the probabilities are factored over
the LM look-ahead tree in such a way that each states of the tree
corresponds to the maximum trigram probability over all words
that are reachable via this specific state corresponding to the lexical
tree copy with the two-word history(u; v). This can be expressed
as:

�uv(s) := max
w2W(s)

p(wju; v) ;

whereW(s) is the set of words that can be reached from tree
state s. The termp(wju; v) denotes the conditional trigram
probabilities. Strictly speaking, we should use the tree nodes (or
arcs) rather than the states of the Hidden Markov models that
are associated with each node. However, each initial state of a
phoneme arc can be identified with its associated tree node. To
incorporate the factored LM probabilities into the acoustic pruning
process of the word conditioned tree search method, we have
to modify the dynamic programming recursion across phoneme
boundaries:

~Quv(t; s) := �uv(s) �Quv(t; s)

~QAC(t) := max
(s;uv)

�
~Quv(t; s)

	
:

A state hypothesis(t; s;uv) will be pruned if

~Quv(t; s) < fAC � ~QAC(t) ;

Table 1: Dynamic programming algorithm for the on-demand
factorization of the trigram LM probabilities within a LM look-
ahead tree.

for each new copy(u; v) of the lexical prefix tree

- create a separate copy of the LM look-ahead tree

- initialization:

leavesSw: �uv(Sw) := p(wju; v)

nodess: �uv(s) := 0

- propagate the LM factored probabilities

from each nodes to its parent node~s:

�uv(~s) := max
s

f �uv(s) g

- store�uv(s) in the lookup table

wherefAC denotes the acoustic pruning factor. As mentioned
before, instead of calculating the factored trigram probabilities
for all possible tree copies beforehand, we calculate the factored
probabilities on demand for each new tree hypotheses depending
on the predecessor wordpair(u; v). These factored LM proba-
bilities are then stored in a look-up table. The LM factorization
can be efficiently achieved by a dynamic programming approach
which is similar to the method introduced in [5]. In a first step,
the leaves of the LM look-ahead tree depending on a tree copy
(u; v) are associated with the conditional trigram probabilities
p(wjuv). Then, the LM factored probabilities are propagated
backwards from the tree leaves to the tree root by using a dynamic
programming recursion, which determines for each tree node the
successor node with the maximum look-ahead probability. Table 1
summarizes the details of dynamic programming procedure of the
on-demand LM factorization.

However, the number of LM look-ahead trees increases with
the number of different tree hypotheses during the search. Thus,
it can be useful to approximate the trigram in the LM look-ahead
by a bigram so that the LM look-ahead trees depend only on the
immediate predecessor wordv and not on the two predecessor
words (u; v). Thus, we have to adapt the acoustic scores across
phoneme boundaries as follows:

~Quv(t; s) := �v(s) �Quv(t; s) ;

where�v(s) = maxw2W(s) p(wjv) denotes the factored bigram
LM probabilities andp(wjv) the conditional bigram probabilities.

3.2. Subtree Dominance

Nevertheless, when using such a LM look-ahead pruning
technique additional computation effort has to be spend for the
same part of the lexical prefix tree in different tree copies. To
reduce the redundant calculations of these subtrees, we enlarge the
LM look-ahead pruning concept by exploiting subtree dominance
(SD) [1]. That means, an instance of a subtree is dominated
by another subtree, if the overall score of this instance is lower
than the score of another subtree considering theworstLM model
probability in that subtree. Thus, the dominated subtree can be
eliminated for further considerations. To incorporate the subtree
dominance criterion into the LM look-ahead pruning, we associate
each states (strictly speaking arc or node) of the LM look-ahead



tree with the worst LM probability (factored SD probability) of
all reachable word ends from this state. In the case of a trigram,
the factored SD probability�uv(s) for states depending of the
two-word history(u; v) can be defined as:

�uv(s) := min
w2W(s)

p(wjuv) :

To apply the associated pruning criterion across phoneme
boundaries, we compute for each state(t; s) thebestfactored SD
probabilityQ

SD
(t; s):

Q
uv
(t; s) := �uv(s) �Quv(t; s)

Q
SD

(t; s) := max
(uv)

�
Q
uv
(t; s)

	
:

Then, we prune a state hypothesis(t; s;uv) if:

~Quv(t; s) < Q
SD

(t; s) :

The computation of the factored SD probabilities�uv(s) can be
performed with the same dynamic programming procedure as
shown in Table 1. For this, we propagate the worst factored
LM probabilities�uv(s) from the leaves to the tree root. This
operation will be done in parallel to the computation of the usual
factored LM probabilities�uv(s).

4. STATE DEPENDENT PRUNING

In the usual standard beam pruning or so-called acoustic pruning,
state hypotheses with a score relatively close to the best of all
active states are retained as active, the others are pruned. Thus,
a state(t; s;uv) is removed if:

Quv(t; s) < fAC � max
(s0;uv)

�
Quv(t; s

0)
	
;

where fAC denotes the acoustic pruning factor. The acoustic
pruning can be further refined by applying the concept of subtree
dominance on state index level. In principle, we have to compare
only hypotheses with the same state index (but with different word
histories). This so-called state dependent pruning performs as
follows: For each states, we determine the best scoring hypothesis
(t; s):

QD(t; s) = max
(uv)

f Quv(t; s) g :

Denoting the so-called state dependent pruning factor withfD, a
state hypothesis(t; s;uv) will be removed if

Quv(t; s) < fD �QD(t; s):

5. EXPERIMENTAL RESULTS

The experimental tests were carried out on the ARPA North
American Business (NAB’94) H1 development corpus comprising
310 sentences with a total of7 387 words. In all recognition
experiments, we used a22 411-word lexicon containing2 434
pronunciation variants and a trigram language model with a
perplexity of PPtri = 141:1 [8]. 199 of the spoken
words were out-of-vocabulary words. We used about 290 000
Laplacian mixture densities for each gender. All experiments
were performed on an ALPHA 5000 PC (SpecInt’95:15:4). The
results of the recognition tests are depicted in Table 2. The

Table shows the maximum number of LM look-ahead trees per
time frame (LMLA-trees) required during the search process, the
average search space per time frame in terms of state, arc and
tree hypotheses, the recognition errors (deletions (DEL), insertion
(INS), word error rate (WER)) and the real time factor (RTF) for
different LM look-ahead techniques.

First, we investigated the effect of the LM look-ahead on the
size of search space and the recognition accuracy. In an initial
experiment, we performed two tests with a so-called unigram LM
look-ahead [7]. The corresponding LM look-ahead tree consists
of 68 587 phoneme arcs which conforms to the size of phoneme
arcs of the lexical prefix tree. To achieve a word error rate of
14:3%, on average21466 state hypotheses per time frame are
needed resulting in a RTF of9:1. Then, we tested the bigram
and the trigram LM look-ahead for different pruning thresholds.
The used LM look-ahead tree comprises12 764 arcs. Considering
the recognition results without exploiting subtree dominance, the
bigram LM look-ahead reduces the size of the search space by a
factor of 4 in comparison to the unigram LM look-ahead. The
trigram LM look-ahead further reduces the size of search space
by about20%. However, the bigram LM look-ahead leads to a
greater acceleration of the search since the LM look-ahead trees
depends only on the immediate predecessor word. The maximum
number of state hypotheses per time frame (MaxHyp = 100 000)
used in the histogram pruning was conservatively large adjusted
beforehand so that a further reduction of the size of the search
space can be expected by decreasingMaxHyp.

Then, we tested the subtree dominance (SD) pruning criterion.
To show the efficiency of the SD pruning, we performed a first
series of experiments with only one acoustic pruning parameter
(FLM = 1;MaxHyp = 1). Comparing these results to
the results with a fixed LM threshold (FLM ) of 60, the search
space is only increased by about10 � 15%. Obviously, when
exploiting subtree dominance less search errors are made and the
memory cost of the LM look-ahead as well as the computational
cost can be further decreased. In a further series of experiments,
we added the state dependent pruning approach to the LM look-
ahead using subtree dominance. As we can see from Table 2, a
slight speed-up of the search can be achieved. Finally, we will
consider the recognition cost for the search using LM look-ahead
pruning combined with subtree dominance and state dependent
pruning (Table 3). The computational time (real time factor, RTF)
and the typical memory cost (mega bytes [MB]) are given for
each of the main search operations: log-likelihood calculation,
acoustic search, LM recombination, LM look-ahead and LM
access measured on a subset of the test corpus (every first sentence
of the20 speakers). The results are shown in Table 3. Due to the
high cost of the LM access during the trigram factorization, the
bigram LM look-ahead performs slightly faster than the trigram
LM look-ahead.

6. SUMMARY

In this paper, we described an improved lexical tree search
method for handling trigram language models using LM look-
ahead techniques. The efficiency of the LM look-ahead techniques
can be substantially improved by exploiting subtree dominance
with virtually no loss in the recognition accuracy. The state
dependent pruning method leads to a further speed-up of the
search. For the20 000-word NAB’94 task, the search can be
speeded up to3:3 times real time without a significant effect on



Table 2: Effect of the several LM look-ahead pruning techniques on the search effort and recognition accuracy (NAB’94 H1 development
set, trigram LM withPPtri = 141:1; ALPHA 5000 PC (SpecInt’95:15:4)).

Type of LM look-ahead FAC FLM FD LMLA search space recognition errors [%] RTF
trees states arcs trees DEL / INS WER

unigram LM look-ahead without SD 120 60 – 1 21466 6403 64 1.7 / 2.7 14.3 9.1
(PPuni = 996:6) 110 60 – 1 14414 4346 52 1.7 / 2.7 14.4 7.1
bigram LM look-ahead without SD 100 60 – 195 5891 1818 35 1.8 / 2.7 14.2 5.8
(PPbi = 203:4) 90 – 171 3238 1022 25 1.8 / 2.8 14.6 4.6

with SD 100 1 – 636 5285 2978 35 1.7 / 2.6 13.9 7.0
60 – 192 5094 1532 26 1.8 / 2.6 14.0 5.4

40 189 4340 1298 18 1.8 / 2.6 14.1 4.7
90 1 – 426 2879 889 21 1.8 / 2.7 14.3 4.8

60 – 170 2858 882 18 1.8 / 2.7 14.4 3.5
40 162 2595 801 13 1.8 / 2.7 14.4 3.3

trigram LM look-ahead without SD 100 60 – 929 4914 1520 35 1.7 / 2.7 14.2 8.4
(PPtri = 141:1) 90 – 785 2618 827 24 1.8 / 2.7 14.4 5.7

with SD 100 1 – 3221 4725 1706 35 1.7 / 2.6 13.9 10.7
60 – 785 4200 1266 26 1.7 / 2.6 14.0 6.3

40 638 3557 1067 19 1.7 / 2.7 14.1 6.0
90 1 – 1701 2580 789 21 1.8 / 2.7 14.3 7.9
90 60 – 673 2322 718 18 1.7 / 2.7 14.3 4.8

40 559 2098 648 14 1.7 / 2.7 14.4 4.3

Table 3: Recognition effort for a trigram LM look-ahead(PPtri =
141:1) and a bigram LM look-ahead (PPbi = 203:4) in
combination with subtree dominance and state dependent pruning
(Pruning thresholds:FAC = 100; FLM = 60; FD = 40;
Test conditions: subset of the NAB’94 H1 development set:
20 speakers = 20 sentences = 519 spoken words = 211.24 s;
ALPHA 5000 PC (SpecInt’95: 15.4)).

LM look-ahead (LA) bigram LA trigram LA
states/arcs/trees 4116 / 1244 / 17 3467 / 1054 / 25
word error rate 72/519 = 13.8% 70/519 = 13.5%

recognition effort RTF MB RTF MB
log-likelihood calc. 1.4 35 1.3 35
acoustic search 2.1 7 1.3 7
LM recombination 0.1 - 0.1 -
LM look-ahead 0.3 25 0.5 80
LM access 0.9 60 2.3 60
other operations 0.1 2 0.2 2
overall effort 4.9 129 5.7 184

the recognition accuracy.
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