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ABSTRACT
The GDE criterion is based on the estimation of the Gerschgorin
disks’ radii where the disks are separated in two distinct sets :
one associated to the signal sources, the other related to the
noise. We aim at modifying that criterion into a new one called
SGDE by using the sum of the disks’ radii. Besides, the SGDE
criterion is modified with a simple deflation on the sum of the
Gerschgorin radii to obtain a better estimation with sources of
different power. We also suggest applying a deflation method to
the covariance matrix before using the criteria based on the
Gerschgorin radii. The transformed Gerschgorin radii can be
connected to the Least-Squares through the transformed cross-
correlation vector. So, two new criteria are put forward on the
same principle as the SGDE criterion. These criteria can be
applied in many situations : coloured or white noise, sources of
different power.

1. INTRODUCTION

In spectral analysis, the estimation of the source number or
frequency components is a crucial problem because the
performances of most of the high resolution methods depend on
the dimensions of signal and noise subspaces (MUSIC, ESPRIT,
etc.). A lot of criteria have been studied in literature so far,
among which direct criteria based on the eigenvalues profile of
the covariance matrix [1], more elaborated criteria considering
the statistical properties of noise (AIC, MDL, etc.) [2] and,
recently, a criterion resting on the profile of the eigenvalues of
noise [3]. However, if the number of samples is small, if the
noise is not a Gaussian white noise, and if the sources are of very
different power, then most of the criteria lose their efficiency or
cannot be applied any longer. Still, there remains a new criterion,
the GDE criterion (Gerschgorin Disk Estimator), the efficiency of
which is not linked at all to the nature of the noise [4]. As its
name indicates, this criterion makes use of the Gerschgorin
theorem according to which the eigenvalues λ of a squared
matrix A of a dimension (N,N) belong to the union of the N
Gerschgorin disks, that is to say :
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where each Gerschgorin disk Dk  is defined on the complex

plane by a radius :
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Yet, in reference [4], the authors have shown that the
Gerschgorin theorem cannot be applied as such to estimate the
number of sources, because the disks are tightly interlacing and
the radii are so long that the signal and noise subspaces cannot be
distinguished. Indeed, the membership of the eigenvalues
associated to noise can be confused with the belonging field of
the eigenvalues associated to signal. The following example
shows the interlacing. We consider a signal x(t) of 20 samples
composed of two sinusoids and of a white Gaussian noise n(t) of
unitary variance, such as :

x t A f t A f t n t( ) sin( ) sin( ) ( )= + +1 1 2 22 2π π (3)

where t = 1, 2, ... , 20 , A1= A2 = 4,47 (10 dB) and the

normalized frequencies are f1 = 0.20, f2 = 0.25 . The covariance

matrix C of size (8,8) is under the backward-forward form. The
Gerschgorin theorem applied to C gives the figure 1.
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Fig. 1. Gerschgorin disks of C (* : disk centers).

That is why, in reference [4], a solution requiring a unitary
transformation of the covariance matrix has been put forward.
This solution does not modify the eigenvalues and reads as
follows :

Let C be a covariance matrix :

C
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where c is the last column of C except for the last element, then
there is a unitary matrix :
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so that the transformed covariance matrix becomes :
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The diagonal matrix S1 contains eigenvalues λ’ of the submatrix
C1. As U is a unitary matrix, the eigenvalues of S are the same as
those of C, and it has been shown that the Gerschgorin disks
have the following radii and centers :

r Uk
H= 1 c    , Ok = λ’ (7)

for k=1, ... , N-1. In theory, in the case of an infinite number of
samples, the radii associated to the noise subspace are null,
whereas those associated to the signal subspace are not. In
practice, as the number of samples is finite, we look for a set of
disks with long radii, for the signal subspace, which is to be
distinct from a second set of disks with small radii, for the noise
subspace. With the unitary transform, the figure 1 becomes :
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Fig. 2. Gerschgorin disks of C after unitary transform.

On the one hand, the disk centers associated to the signal
subspace are distinct from the other centers gathered around zero.
On the other hand, their radii are longer. We distinghish 4
sources corresponding to the 2 sinusoids.

To estimate the number of sources, we can search for a
reasonable threshold to separate the two sets of disks or to apply
the GDE criterion defined thus :
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where k = 1, ... , N-1. F(L) is a constant or an adjustable
function, depending on the signal number of samples L.
Generally, F(L)=1. This criterion is based on the hypothesis that
the source number M is such that M<N-1. The source number is
determined when the first negative value of GDE(k) is reached,
so that we have M=k-1.

2. THE SGDE CRITERION

However, the GDE criterion is not satisfactory because, contrary
to the eigenvalues that are arranged in a descending order, the
radii are not. For a significative eigenvalue, we can have a
smaller radius than those associated to other significative
eigenvalues. Consequently, the GDE criterion stops at the first
negative value, although the other values can still be positive. To
avoid this situation as far as possible, we propose the SGDE
(Sum of Gerschgorin Disk Estimators) criterion as follows :
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This criterion is more robust than the GDE criterion and provides
better results in all situations. What is more, we modify this
criterion with a simple deflation technique on the sum of the
Gerschgorin radii to obtain a better estimation with sources of
different power. The deflation prevents the longest radii from
hiding the others. Then, the previous criterion, associated to
deflation and called SGDE_D, becomes :
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The source number is also determined when the first negative
value is reached, so that M=k.

3. LINK WITH THE LEAST-SQUARES

For the standard Least-Squares solution, it is well-known that the
minimization of the error ε in the following equation :

ε = −d wX (11)

where X is a data matrix and w a weight vector, corresponds to
the  maximisation of the Euclidean norm Ey of the

approximation y with y = X w, that is to say :

E X X Cy
H= w w = w wH H

1 (12)

where the covariance matrix C1 of dimension (N-1,N-1) is

defined by C X XH
1 = . The LS solution for w is also defined

by :

w c= −C1
1 (13)

 with c = XH d. If we replace this equation in (12), we obtain :
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and the transformed cross-correlation vector introduced in the
equation 5 of [5] corresponds to the equation of the radius rk

( r Uk
H= 1 c ). So, the Euclidean norm Ey is defined by :

E
r S

y
k

k

N
k

k

N

k
k

N

= = =
=

−

=

−

=

−

∑ ∑ ∑
2

1

1

1

1

1

1
1

λ π λ
θ

κ κ
’ ’

(15)



where Sk is the surface of the Gerschgorin disks : S rk k= π 2

and where θk is a measure of the energy projected along the basis

vectors forming U1. So, the Euclidean norm uses the surface of

the Gerschgorin disks, weighted by the inverse of the eigenvalues
of C1. We have a link between the transformed Gerschgorin radii

and the measure of the energy θk. So, like for the GDE criterion,

we can define the GDEE criterion (Gerschgorin Disk with
Energy Estimators), the SGDEE criterion and its version with a
simple deflation (SGDEE_D : Sum of Gerschgorin Disks with
Energy Estimators and Deflation) :
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For the GDEE criterion, the source number estimation M
depends on the first negative value k , so that M = k-1. It is the
same condition for the SGDEE and SGDEE_D criteria, except
that M = k.

4. A DEFLATION TECHNIQUE

This technique makes it possible to separate slightly more easily
the ″signal″ eigenvalues from the ″noise″ eigenvalues with a
deflation technique of C, but the cost of calculation is higher. Let
us add that all criteria described previously can be associated to
this technique. The method consists in taking off the eigenvector
of C corresponding to the highest eigenvalue to form a projection
matrix P on the supposed noise subspace. Then, C is projected on
this subspace. This method is repeated up to the last eigenvector
and can be summed up by the following description :

1. eigendecomposition of C(N,N).

2. deflation technique :

for i = 1 to N

2.1 projection matrix P = Up Up
H ( with Up containing

the N+1-i last eigenvectors of U).

2.2 projection : Cp = P C .

2.3 formation of the matrix C1 and of vector c.

2.4 eigendecomposition of C1 in eigenvalues λ’ and 

      eigenvectors ( matrix U1 ).

2.5 Calculus of radii from (7).

2.6 Calculus of variables for the criteria (for example 
      for the GDE criterion : rp(i) = r1)

end_for

3. Calculus of criteria (for example for the GDE : r  = rp).

The deflation technique applied to C improves the results
presented in figure 2 : 4 disks are very distinct from the others
(see fig. 3).
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Fig. 3. Gerschgorin disks after the deflation of C.
The deflation enables to reduce the radii associated to the noise
subspace, without any important consequences for the radii
associated to the signal subspace. It provides the best results
when it is associated to the SGDE_D and SGDEE_D criteria.
There is no figure in this paper by lack of room.

5. SIMULATION RESULTS

The signal under consideration x(t) has 32 samples and contains
2 sinusoids of different power. Their normalized frequencies are
f1 = 0.25 and f2 = 0.27. The following equation describes the

signal x(t) :

x t A f t A f t n t( ) sin( ) sin( ) ( )= + +1 1 2 22 2π π (19)

where t = 1, 2, ... , 32  ,  A1 = 4,47 (10 dB) and A2 = A1 or

varies from 10 dB to 25 dB according to the simulations. The
estimated covariance matrix C, of dimension N = 16, is in the
modified covariance form. 200 simulations of Monte-Carlo are
carried out. n(t) is a Gaussian white noise with a unitary variance.
In simulations, the noise n(t) is filtered by an AR(1) (coefficient
0.9) to obtain a Gaussian nonwhite noise.

The criteria GDE and GDEE are not presented here because their
performances are always inferior to their improved version
SGDE and SGDEE. In the case of Gaussian white noise and
sources of equipower, the SGDE and SGDEE criteria without
deflation have a detection rate superior by 3 dB compared to the
same criteria with deflation (see fig. 4). But when the sources
have a different power, the criteria with deflation show a
difference of power superior to 10 dB and the SGDEE_D
criterion gives the best results (see fig. 5). In the case of Gaussian
nonwhite noise and sources of identical power, the criteria SGDE
and SGDEE provide better rates of detection than SGDE_D and
SGDEE_D, with an advantage for the SGDE criterion (see fig.
6). Nevertheless, if the sources have a different power, the



SGDE_D and SGDEE_D criteria are better (see fig. 7). We have
3 dB of improvement with SGDE_D and 7 dB with SGDEE_D
compared to SGDEE. The criteria are not directly sensitive to the
noise. So, we note little difference in performances between the
figures 4 and 6, and the figures 5 and 7. The maximum detection
rate remains around the well-known threshold of 5 dB.

6. CONCLUSIONS

The proposed SGDE criterion improves the performances of the
GDE criterion. Associated to a simple deflation, this criterion is
far less sensitive to the difference of power between the sources.
Moreover, we have shown that the transformed Gerschgorin radii
can be connected to the Least-Squares through the Euclidean
norm. Then, we have deduced the family of the SGDEE criteria
which is based on the surface of the Gerschgorin disks instead of
the radii. This family presents the best results when the power of
sources is not equal, and the results obtained in the case where
the powers are equal or almost equal can be improved thanks to
the deflation technique described in 4. The proposed criteria can
be applied in most of the simulated or real cases.

Without deflation : SGDE (  ) and SGDEE ( *  )

With deflation : SGDE_D (  ) and SGDEE_D ( *  )
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Fig. 4. Probability of detection with Gaussian white noise and
A1 = A2 from -5 dB to +15 dB.
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Fig. 5. Probability of detection with Gaussian white noise
(A1 = 10 dB, A2 varies from 10 dB to 25 dB on the x-axis).
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Fig. 6. Probability of detection with Gaussian nonwhite noise
and A1 = A2 from -5 dB to +15 dB.
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Fig. 7. Probability of detection with Gaussian nonwhite noise
(A1 = 10 dB, A2 varies from 10 dB to 25 dB on the x-axis).
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