
GCMAC-BASED EQUALIZER FOR NONLINEAR CHANNELS

Francisco J. Gonz�alez-Serrano (y), An��bal R. Figueiras-Vidal (z)
and A. Art�es-Rodr��guez (x)

(y) DTC - ETSI Telecomunicaci�on. Universidad de Vigo. As Lagoas-Marcosende.
36200 Vigo, Spain. e-mail : frank@tsc.uvigo.es

(z) ATSC-DI, EPS-Telecom, Universidad Carlos III de Madrid. Butarque, 15
28911 Legan�es, Madrid, Spain. e-mail : arfv@ing.uc3m.es

(x) DSSR - ETSI Telecomunicaci�on. UPM. Ciudad Universitaria.
28040 Madrid, Spain. e-mail : antonio@gtts.ssr.upm.es

ABSTRACT

This paper deals with the compensation for the nonlin-
ear distortion introduced by power-e�cient ampli�ers
on linear modulations by means of equalization. We
propose a new equalizer based on a reduced-complexity
network called GCMAC. The GCMAC-based equalizer
is compared with other well-known structures such as
the Volterra �lter and the Multi-layer Perceptron. Ex-
tensive computer simulations have been carried out.
The obtained results show the e�ectiveness of the pro-
posed structure to compensate for strong nonlineari-
ties.

1. INTRODUCTION

The available spectrum for the new communica-
tions networks will soon be at a premium as the user
population increases, and employing multilevel Pulse
Amplitude Modulation (PAM), one kind of bandwidth
e�cient transmission method for digital signals, may
signi�cantly ease the problem. Nevertheless, practi-
cal digital communication systems employing PAM, re-
quire a compromise between power e�ciency and lin-
earity of the transmitter ampli�ers. If the ampli�ers
are working near its saturation point, a better use of
the available power is achieved, but the PAM signal is
severely distorted due to its envelope 
uctuation. It is
possible to diminish the nonlinear distortion by reduc-
ing the level of input signals, operating the ampli�er in
a quasi-linear region far from its saturation point (the
reduction of output power is used to be called input
back-o�). However, this strategy reduces the trans-
mitted signal power and, therefore, the noise margin.

The need of some compensation technique has been
recognized long time ago, and some early proposed so-
lutions are described in [1], [2] and [3]. Nonlinear com-
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pensators consist of controlling either the signal before
it is sent (TX-techniques) or the noisy received signal
(RX-techniques). In this paper we consider the com-
pensation problem from the receiver perspective. The
optimal solution is the Maximum Likelihood Sequence
Detector (MLSD) using the Viterbi Algorithm [4], how-
ever its large complexity makes this method useless for
practical channels.

In this paper, a new approach for the Decision-
Feedback Equalizer (DFE) using the Generalized Cere-
bellar Model Arithmetic Computer (GMAC) [5, 6] is
presented. The GCMAC network possesses nonlinear
decision making capabilities and yet has a linear-in-
the-parameters structure. The former property is es-
sential for realizing the optimal equalization solution
and the latter characteristic is bene�cial in practical
implementation. In this paper, that extends the earlier
work reported in [7] where the GCMAC was employed
for nonlinear channel predistortion, the GCMAC-based
DFE (GCMAC-DFE) is compared with the conven-
tional Linear DFE (L-DFE), the Volterra (V-DFE) and
the MLP-based DFE (MLP-DFE) in terms of their con-
vergence rates and Signal-to-Noise Ratio (SNR) degra-
dation. The simulation results show that the GCMAC
improves the performance of previous networks when
strong nonlinearities are present.

The paper is organized as follows. The e�ects of
nonlinear ampli�cation of PAM signals are analyzed in
Section 2. The structure of the GCMAC network is
discussed in Section 3. Simulation results and perfor-
mance comparisons are explained in Section 4. Finally,
conclusions are given in Section 5.

2. PROBLEM STATEMENT

Figure 1 depicts the block diagram of a PAM sys-
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Figure 1: Block diagram of the PAM communication
system.

tem. The transmitter input consists of complex sym-
bols belonging to a M -ary discrete-amplitude set. For
the purposes of this paper, we will assume that the
PAM symbols are independent and identically distributed,
forming a white discrete-time random process. Driving
the PAM communication system with this process, the
baseband complex signal at the output of the symbol-
rate sampler can be written as :

r[k] = F (: : : ; s[k� 1]; s[k]; s[k+ 1]; : : :) (1)

where r[k] is the received symbol, fs[k]g are the origi-
nal PAM symbols, and F (�) is the nonlinear mapping
which describes the behavior of the channel1.

Channel Equalization
The general Decision-Feedback Equalizer (DFE) trans-

forms a �nite sequence of P correlative received and de-
tected PAM symbols and produces the estimated sym-
bol ŝ[k]:

ŝ[k] = H(ŝ[k �Nb]; : : : ; ŝ[k� 1];

r[k]; r[k+ 1]; : : : ; r[k+Mf ])

= H(rP [k]) (2)

where Nb is the order of the feedback part, Mf is the
order of the feedforward part and P = Nb+Mf+1 is the
order of the equalizer (it is assumed that the channel
does not introduces additional delay). The optimum
decision making function H(�) has to be designed in
such a way that minimizes the BER.

Equalization can be formulated as an approxima-
tion problem and, for this reason, many structures for
approximating are essentially valid to be applied to this
problem. We have selected the GCMAC network [6]
due to its fast and simple learning algorithmwhich pro-
vides a powerful capability for approximating discrete-
domain functions; it is important to remark that part

1We consider the channel including all the elements and de-
vices between the modulator and the detector.

of the input space of the function H(�) has a discrete-
amplitude nature (it should be noticed that the feed-
back part is driven by the previousM -ary PAM symbol
decisions).

3. NETWORK STRUCTURE

The GCMAC network has its roots in a model pro-
posed by Albus in the mid seventies for control appli-
cations [5]. The GCMAC network approximates the
desired nonlinear function (the optimal decision func-
tion) using a set of overlapped local basis functions
distributed across the input domain. The GCMAC al-
lows the local basis functions to be de�ned on hyper-
parallelepipedic regions; the size of these regions is
speci�ed by the vector � = [�1; : : : ; �P ]T , where 1 �
�i < M , and M is the number of levels of the dis-
cretized input variables. To provide the network with
generalization abilities, �max = max(�) basis functions
cover every cell of input space. In this way, the gen-
eralization is in
uenced by the geometry of the local
domains, and, for this reason, the vector � is called
generalization vector2.

The GCMAC input/output function can be decom-
posed into two consecutive mappings. The �rst one
produces an N -dimensional addressing vector a given
by:

x! a(x) = [�1(x); : : : ;�N (x)]
T
; (3)

where f�1(x); : : : ;�N (x)g is the set of basis functions
3. The addressing vector a only has �max non-zero ele-
ments and, generally, the relationship P < �max � N

holds. The addressing vector lies in a higher-dimensional
space where the desired function can be approximately
linear. For this reason, the second map consists of the
projection of the transformed input vectors a onto a
vector of weights w, which produces the output of the
network :

y = H(x) = w
T
a(x) =

NX
j=1

wj�j(x) : (4)

Hence, the approximation used by the GCMAC net-
work is linear in the unknown coe�cients w and, there-
fore, simple instantaneous learning laws can be used,
for which convergence can be established subject to
well-understood restrictions [8]. Moreover, the num-
ber of weights that are used to update or construct the
output, �max is independent of the dimension of input

2When �i = 1;8i, the GCMAC becomes a LUT (no general-
ization); the larger �i is, the more generalization is obtained.

3In order to remain consistent with the notation developed
for the CMAC network, the input vector is represented by x.



space; for this reason, the GCMAC network is capa-
ble of managing high-dimensional input spaces, useful
property when the nonlinear channel has a large mem-
ory.

3.1. Computational requirements

The number of available basis functions (weights),
N , can be bounded by :

�max min
i

�
M

�i

�P
� N � �max max

i

�
M

�i
+ 1

�P
:

(5)

The GCMAC network is trained by using a modi�ed
version of the Albus' rule [5, 9]. Our algorithm re-
quires one 
oat point complex subtraction to compute
the actual error, �max complex additions and one 
oat-
point inversion to compute the gains of the weights, and
�max scaling operations and �max additions to update
the weights. The network's output is computed after
2�max � 1 complex multiplications and accumulations.

4. PERFORMANCE ANALYSIS

To illustrate the behavior of the analyzed equaliz-
ers, we have simulated a typical 16-QAM system with
root-raised cosine pulse shaping �lter (� = 0:5) and a
High Power Ampli�er (HPA) operating at 2 dB of in-
put back-o�. The channel is assumed to have a 
at fre-
quency response with additive, white, circularly sym-
metric, Gaussian noise. The chosen order of the feed-
forward and feedback parts of the compared equalizers
are Md = 1, Nr = 1, respectively.

The networks used for approximating the ideal equal-
ization function are a �fth-order Volterra Filter (with
57 adjustable parameters), a MLP with two-hidden lay-
ers (10 nodes in the �rst hidden layer and 6 in the sec-
ond one, giving 150 adjustable parameters), and a GC-
MAC network whose con�guration is explained as fol-
lows. The inputs coming into the feedforward part are
quantized using 32 nonuniform-spaced levels; the corre-
sponding generalization vector is �d = [16; 16; 16;16]T

(it should be noticed that the dimension of input space
is doubled to process complex inputs). Since, the pre-
vious decisions are already discrete in amplitude, no
quantization is needed, and the selected generalization
vector is �r = [3; 3]T . For simplicity, simulations were
carried out with constant basis functions.

The Volterra and the GCMAC equalizers have been
trained using the LMS algorithm. The MLP was trained
using the Back-Propagation (BP) algorithm modi�ed
with a momentum term that increases the convergence
rate and produces smooth weight changes [10]. The
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Figure 2: Convergence curves. Curve 1: Fifth-order
Volterra equalizer; curve 2: Multi-Layer Perceptron
(6-10-6-2); curve 3: GCMAC (�d = [16; 16; 16;16]T,
�r = [3; 3]T). Traces are ensembled average of 15 con-
vergence curves.

Mean Square Error (MSE) curves achieved by the an-
alyzed equalizers are represented in Figure 2. It is ob-
served that the Volterra equalizer presents the fastest
convergence (curve 1). The learning curve of the MLP
(curve 2) reveals the irregular behavior of the BP al-
gorithm; in spite of this, the MLP outperforms the
Volterra, although at the expense of a larger train-
ing time. Finally, the GCMAC network achieves the
least �nal MSE outperforming both the MLP and the
Volterra equalizers in 3 dB and 4 dB, respectively.

Other way to quantify the validity of the analyzed
equalizers is to compute the equivalent SNR degrada-
tion caused by the residual nonlinear distortion at a
speci�ed Bit-Error Rate (BER). The Total Degrada-
tion, expressed in dB, is de�ned as the di�erence be-
tween the required SNR by the equalized system to
reach the speci�ed BER at a given output back-o�,
and the required SNR to obtain the same BER on the
Gaussian 
at channel. The total degradation results
in a convex function of the input back-o�, taking the
minimumvalue at the optimuminput back-o� (BOopt

in ).
We have obtained this function after using the quasi-
analytical procedure described in [11]. Results for a
target BER of 10�4 are shown in Figure 3 and Table
1.

Again, it is con�rmed that the GCMAC-based equal-
izer performs clearly better than the other equalizers
for low input back-o�, i.e. when strong nonlineari-
ties are present in the received sequence. The gain4

achieved by the GCMAC equalizer is 6 dB with re-

4The gain is de�ned as the di�erence between the values of
the Total Degradation evaluated at the optimum input back-o�.
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Figure 3: Total degradation for the analyzed equalizers.
Curve 1: Linear DFE; curve 2: Fifth-order Volterra
equalizer; curve 3: Multi-Layer Perceptron equalizer;
curve 4: GCMAC equalizer.

[Gain] [BOopt
in ] Weights It. (x100)

1. L-DFE 0 7.35 3 2
2. Volterra 4.44 2.79 57 60
3. MLP 4.67 1.98 150 500
4. GCMAC 6.28 1.28 4924 250

Table 1: Gain and optimum input back-o� for the sim-
ulated equalizers.

spect to the linear DFE. Furthermore, the optimum
input back-o� is only 1.28 dB, which means in practice
a better use of the available power.

5. CONCLUSIONS

In this paper we have proposed a new structure to
equalize nonlinear channels. In particular, we have fo-
cused the compensation for nonlinear distortion caused
by power e�cient ampli�ers on Pulse Amplitude Mod-
ulation systems. By means of a GCMAC-based equal-
izer, it is possible to obtain e�ective compensation even
for strong nonlinearities. The proposed equalizer pro-
vides better performance in steady state MSE, BER
and SNR degradation over other nonlinear structures,
namely the Volterra and the MLP-based equalizers.
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