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ABSTRACT

This paper deals with the compensation for the nonlin-
ear distortion introduced by power-efficient amplifiers
on linear modulations by means of equalization. We
propose a new equalizer based on a reduced-complexity
network called GCMAC. The GCMAC-based equalizer
1s compared with other well-known structures such as
the Volterra filter and the Multi-layer Perceptron. Ex-
tensive computer simulations have been carried out.
The obtained results show the effectiveness of the pro-
posed structure to compensate for strong nonlineari-
ties.

1. INTRODUCTION

The available spectrum for the new communica-
tions networks will soon be at a premium as the user
population increases, and employing multilevel Pulse
Amplitude Modulation (PAM), one kind of bandwidth
efficient transmission method for digital signals, may
significantly ease the problem. Nevertheless, practi-
cal digital communication systems employing PAM, re-
quire a compromise between power efficiency and lin-
earity of the transmitter amplifiers. If the amplifiers
are working near its saturation point, a better use of
the available power is achieved, but the PAM signal is
severely distorted due to its envelope fluctuation. It is
possible to diminish the nonlinear distortion by reduc-
ing the level of input signals, operating the amplifier in
a quasi-linear region far from its saturation point (the
reduction of output power is used to be called input
back-off). However, this strategy reduces the trans-
mitted signal power and, therefore, the noise margin.

The need of some compensation technique has been
recognized long time ago, and some early proposed so-
lutions are described in [1], [2] and [3]. Nonlinear com-
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pensators consist of controlling either the signal before
it is sent (TX-techniques) or the noisy received signal
(RX-techniques). In this paper we consider the com-
pensation problem from the receiver perspective. The
optimal solution is the Maximum Likelihood Sequence
Detector (MLSD) using the Viterbi Algorithm [4], how-
ever its large complexity makes this method useless for
practical channels.

In this paper, a new approach for the Decision-
Feedback Equalizer (DFE) using the Generalized Cere-
bellar Model Arithmetic Computer (GMAC) [5, 6] is
presented. The GCMAC network possesses nonlinear
decision making capabilities and yet has a linear-in-
the-parameters structure. The former property is es-
sential for realizing the optimal equalization solution
and the latter characteristic is beneficial in practical
implementation. In this paper, that extends the earlier
work reported in [7] where the GCMAC was employed
for nonlinear channel predistortion, the GCMAC-based
DFE (GCMAC-DFE) is compared with the conven-
tional Linear DFE (L-DFE), the Volterra (V-DFE) and
the MLP-based DFE (MLP-DFE) in terms of their con-
vergence rates and Signal-to-Noise Ratio (SNR) degra-
dation. The simulation results show that the GCMAC
improves the performance of previous networks when
strong nonlinearities are present.

The paper is organized as follows. The effects of
nonlinear amplification of PAM signals are analyzed in
Section 2. The structure of the GCMAC network is
discussed in Section 3. Simulation results and perfor-
mance comparisons are explained in Section 4. Finally,
conclusions are given in Section 5.

2. PROBLEM STATEMENT

Figure 1 depicts the block diagram of a PAM sys-
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Figure 1: Block diagram of the PAM communication
system.

tem. The transmitter input consists of complex sym-
bols belonging to a M-ary discrete-amplitude set. For
the purposes of this paper, we will assume that the

PAM symbols are independent and identically distributed,

forming a white discrete-time random process. Driving
the PAM communication system with this process, the
baseband complex signal at the output of the symbol-
rate sampler can be written as :

sk — 1], s[k] s[k+1],..) (1)

where r[k] is the received symbol, {s[k]} are the origi-
nal PAM symbols, and F(e) is the nonlinear mapping
which describes the behavior of the channel®.

Channel Equalization

The general Decision-Feedback Equalizer (DFE) trans-

forms a finite sequence of P correlative received and de-
tected PAM symbols and produces the estimated sym-
bol §[k]:

slk] = H(slk— Nol,...,s[k—1],
rlk), rlk+ 1], ... vk + M;])
= H(rplk]) (2)

where N is the order of the feedback part, My is the
order of the feedforward part and P = Np+M;+1is the
order of the equalizer (it is assumed that the channel
does not introduces additional delay). The optimum
decision making function H(e) has to be designed in
such a way that minimizes the BER.

Equalization can be formulated as an approxima-
tion problem and, for this reason, many structures for
approximating are essentially valid to be applied to this
problem. We have selected the GCMAC network [6]
due to its fast and simple learning algorithm which pro-
vides a powerful capability for approximating discrete-
domain functions; it is important to remark that part

I'We consider the channel including all the elements and de-
vices between the modulator and the detector.

of the input space of the function H (e) has a discrete-
amplitude nature (it should be noticed that the feed-
back part is driven by the previous M-ary PAM symbol
decisions).

3. NETWORK STRUCTURE

The GCMAC network has its roots in a model pro-
posed by Albus in the mid seventies for control appli-
cations [5]. The GCMAC network approximates the
desired nonlinear function (the optimal decision func-
tion) using a set of overlapped local basis functions
distributed across the input domain. The GCMAC al-
lows the local basis functions to be defined on hyper-
parallelepipedic regions; the size of these regions is
specified by the vector p = [p1,...,pp]T, where 1 <
pi < M, and M is the number of levels of the dis-
cretized input variables. To provide the network with
generalization abilities, ppmqr; = max(p) basis functions
cover every cell of input space. In this way, the gen-
eralization is influenced by the geometry of the local
domains, and, for this reason, the vector p is called
generalization vector?.

The GCMAC input/output function can be decom-
posed into two consecutive mappings. The first one
produces an N-dimensional addressing vector a given

by:
: ’CI)N(:B)]T ) (3)

where {®q(x),...,Pn(x)} is the set of basis functions
3. The addressing vector @ only has p,q, non-zero ele-
ments and, generally, the relationship P < pmar < N
holds. The addressing vector lies in a higher-dimensional
space where the desired function can be approximately

x—ale) =[®(x),..

linear. For this reason, the second map consists of the
projection of the transformed input vectors a onto a
vector of weights w, which produces the output of the
network :

y=H)=w'ale) =Y wdia). (1)

Hence, the approximation used by the GCMAC net-
work is linear in the unknown coefficients w and, there-
fore, simple instantaneous learning laws can be used,
for which convergence can be established subject to
well-understood restrictions [8]. Moreover, the num-
ber of weights that are used to update or construct the
output, pmaee 18 independent of the dimension of input

2When p; = 1,Vi, the GCMAC becomes a LUT (no general-
ization); the larger p; is, the more generalization is obtained.

3In order to remain consistent with the notation developed
for the CMAC network, the input vector is represented by .



space; for this reason, the GCMAC network is capa-
ble of managing high-dimensional input spaces, useful
property when the nonlinear channel has a large mem-
ory.

3.1. Computational requirements

The number of available basis functions (weights),
N, can be bounded by :

P P
M M
Pmag mjn ( ) < N < Pmae Max <— + 1) .
? Pi i Pi
(5)

The GCMAC network is trained by using a modified
version of the Albus’ rule [5, 9]. Our algorithm re-
quires one float point complex subtraction to compute
the actual error, ppq, complex additions and one float-
point inversion to compute the gains of the weights, and
Pmae Scaling operations and p,4, additions to update
the weights. The network’s output is computed after
2pmaz — 1 complex multiplications and accumulations.

4. PERFORMANCE ANALYSIS

To illustrate the behavior of the analyzed equaliz-
ers, we have simulated a typical 16-QAM system with
root-raised cosine pulse shaping filter (¢ = 0.5) and a
High Power Amplifier (HPA) operating at 2 dB of in-
put back-off. The channel is assumed to have a flat fre-
quency response with additive, white, circularly sym-
metric, Gaussian noise. The chosen order of the feed-
forward and feedback parts of the compared equalizers
are My =1, N, = 1, respectively.

The networks used for approximating the ideal equal-
ization function are a fifth-order Volterra Filter (with
57 adjustable parameters), a MLP with two-hidden lay-
ers (10 nodes in the first hidden layer and 6 in the sec-
ond one, giving 150 adjustable parameters), and a GC-
MAC network whose configuration is explained as fol-
lows. The inputs coming into the feedforward part are
quantized using 32 nonuniform-spaced levels; the corre-
sponding generalization vector is p, = [16, 16, 16,16]"
(it should be noticed that the dimension of input space
is doubled to process complex inputs). Since, the pre-
vious decisions are already discrete in amplitude, no
quantization is needed, and the selected generalization
vector is p, = [3,3]7. For simplicity, simulations were
carried out with constant basis functions.

The Volterra and the GCMAC equalizers have been
trained using the LMS algorithm. The MLP was trained
using the Back-Propagation (BP) algorithm modified
with a momentum term that increases the convergence
rate and produces smooth weight changes [10]. The
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Figure 2: Convergence curves. Curve 1: Fifth-order
Volterra equalizer; curve 2: Multi-Layer Perceptron
(6-10-6-2); curve 3: GCMAC (p; = [16,16,16,16]7,
p, = [3,3]). Traces are ensembled average of 15 con-
Vergence curves.

Mean Square Error (MSE) curves achieved by the an-
alyzed equalizers are represented in Figure 2. It is ob-
served that the Volterra equalizer presents the fastest
convergence (curve 1). The learning curve of the MLP
(curve 2) reveals the irregular behavior of the BP al-
gorithm; in spite of this, the MLP outperforms the
Volterra, although at the expense of a larger train-
ing time. Finally, the GCMAC network achieves the
least final MSE outperforming both the MLP and the
Volterra equalizers in 3 dB and 4 dB, respectively.

Other way to quantify the validity of the analyzed
equalizers is to compute the equivalent SNR degrada-
tion caused by the residual nonlinear distortion at a
specified Bit-Error Rate (BER). The Total Degrada-
tion, expressed in dB, is defined as the difference be-
tween the required SNR by the equalized system to
reach the specified BER at a given output back-off,
and the required SNR to obtain the same BER on the
Gaussian flat channel. The total degradation results
in a convex function of the input back-off, taking the
minimum value at the optimum input back-off (BOffzt).
We have obtained this function after using the quasi-
analytical procedure described in [11]. Results for a
target BER. of 10=* are shown in Figure 3 and Table
1.

Again, 1t is confirmed that the GCMAC-based equal-
izer performs clearly better than the other equalizers
for low input back-off, i.e. when strong nonlineari-
ties are present in the received sequence. The gain®

achieved by the GCMAC equalizer is 6 dB with re-

4The gain is defined as the difference between the values of
the Total Degradation evaluated at the optimum input back-off.
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Figure 3: Total degradation for the analyzed equalizers.
Curve 1: Linear DFE; curve 2: Fifth-order Volterra
equalizer; curve 3: Multi-Layer Perceptron equalizer;
curve 4: GCMAC equalizer.

[Gain] | [BO?'] | Weights | It. (x100)
1. L-DFE 0 7.35 3 2
2. Volterra 4.44 2.79 57 60
3. MLP 4.67 1.98 150 500
4. GCMAC || 6.28 1.28 4924 250

Table 1: Gain and optimum input back-off for the sim-
ulated equalizers.

spect to the linear DFE. Furthermore, the optimum
input back-off 1s only 1.28 dB, which means in practice
a better use of the available power.

5. CONCLUSIONS

In this paper we have proposed a new structure to
equalize nonlinear channels. In particular, we have fo-
cused the compensation for nonlinear distortion caused
by power efficient amplifiers on Pulse Amplitude Mod-
ulation systems. By means of a GCMAC-based equal-
1zer, 1t 1s possible to obtain effective compensation even
for strong nonlinearities. The proposed equalizer pro-
vides better performance in steady state MSE, BER
and SNR degradation over other nonlinear structures,
namely the Volterra and the MLP-based equalizers.
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