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ABSTRACT

This paper addresses a new framework for designing robust
neural network classi�ers. The network is optimized using
the maximum a posteriori technique, i.e., the cost function
is the sum of the log-likelihood and a regularization term
(prior). In order to perform robust classi�cation, we present
a modi�ed likelihood function which incorporate the poten-
tial risk of outliers in the data. This leads to introduction
of a new parameter, the outlier probability. Designing the
neural classi�er involves optimization of network weights as
well as outlier probability and regularization parameters.
We suggest to adapt the outlier probability and regulariza-
tion parameters by minimizing the error on a validation set,
and a simple gradient descent scheme is derived. In addi-
tion, the framework allows for constructing a simple outlier
detector. Experiments with arti�cial data demonstrates the
potential of the suggested framework.

1. INTRODUCTION

Neural networks are exible tools for pattern recognition
due to the universal approximation theorems [6]. We con-
sider a neural classi�er architecture based on a feed-forward
net with a modi�ed SoftMax [3] normalization as presented
in [1] (see also, [2], [7]). The outputs of the network esti-
mate the class conditional posterior probabilities and the
network is trained using a maximum a posteriori (MAP)
framework. Robustness is incorporated via a probabilistic
de�nition of outliers. Thus a given example is considered as
an outlier if its class label is changed with a certain proba-
bility "; the outlier probability .

The associated risk of over�tting on noisy data is of ma-
jor concern in neural network design [5]. The objective of
network design is to obtain a reliable and minimal general-
ization error which can be done by constraining the model
exibility and adapting the outlier probability. Model con-
straints are imposed directly via pruning techniques (see
e.g., [1], [9], [10]) or indirectly using regularization. We will
merely consider regularization in this presentation.

Based on earlier work [1], [9], [10], we will present an
iterative scheme for simultaneously adapting the amount
of regularization and outlier probability by minimizing the
validation error calculated from a single validation set. Here
we take the validation error as an estimate of the true gen-
eralization error.
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2. NETWORK ARCHITECTURE

Suppose that the input (feature) vector is denoted by x
with dim(x) = nI and Ci denotes the i'th of the mutually
exclusive classes, i = 1; 2; � � � ; c. The aim is to model the
posterior probabilities of the class given the input. Aiming
at robustness against an outlier1, de�ned as a class label
which erroneously is changed to one of the other classes,
we introduce the probability of an outlier, 0 � " � 1. It
is assumed that the occurrence of an outlier is independent
of class label and input location. Thus the outlier process
acts as an extra noise source independent of input location,
as opposed to the error due to overlap in class posterior
probabilities. This leads to the de�nition of posterior prob-
abilities, p(Cijx), 1 � i � c,

p(Cijx) = p0(Cijx) � (1 � ") +
"

c� 1

cX
j=1;j 6=i

p0(Cj jx): (1)

where p0(Cijx) is the posterior probability in the case of zero
outlier probability. The �rst term is the posterior proba-
bility for Ci times the probability that an outlier does not
occur while the second term is the sum of posterior prob-
abilities for Cj 6= Ci times the scaled outlier probability
� � "=(c � 1) 2 [0; 1=(c � 1)] that Ci has changed speci�-
cally to Cj . Under a simple loss function the Bayes optimal2

classi�er assigns class label Ci to x if i = argmaxj p(Cj jx).
Note that Eq. (1) can be rewritten as

p(Cijx) = p0(Cijx)(1� �c) + �: (2)

Since 0 � p0(Cijx) � 1 and
Pc

i=1
p0(Cijx) = 1 due to

mutual exclusive classes, then � � p(Cijx) � 1 � " and
further

Pc

i=1
p(Cijx) = 1.

De�ne byi as estimates of the posterior probabilities given
by byi = bzi(1 � �c) + � where bzi are estimates of the " = 0
posterior probabilities, p0(Cijx). Following [1], [7] (see also
[2]), bzi, are taken as outputs of a neural network. Since
the posterior probabilities sums to 1, also

Pc

i=1
bzi = 1,

i.e., we merely estimate c�1 posterior probabilities, say bzi,
1 � i � c� 1, and calculate the last as bzc = 1�

Pc�1

i=1
bzi.

De�ne a 2-layer feed-forward network with nI inputs,
nH hidden neurons and c� 1 outputs by:

hj(x) = tanh

 
nIX
`=1

wI
j`x` + wI

j0

!
; (3)

1See [8] for various approaches on robust statistics.
2That is, each misclassi�cation is equally weighted corre-

sponding to minimal probability of misclassi�cation.



�i(x) =

nHX
j=1

wH
ijhj(x) + wH

i0 (4)

where wI
j`, w

H
ij are the input-to-hidden and hidden-to-output

weights, respectively. All weights are assembled in the weight
vector w = fwI

j`; w
H
ij g. In order to interpret the network

outputs as probabilities we use a modi�ed normalized ex-
ponential transformation [1] similar to SoftMax [3],

bzi = exp(�i)Pc�1

j=1
exp(�j) + 1

; 1 � i � c� 1; (5)

and bzc = 1�
Pc�1

i=1
bzi.

3. TRAINING AND REGULARIZATION

Assume that we have a training set T of Nt related input-
output pairs T = f(x(k);y(k))gNt

k=1
where

yi(k) =
n

1 if x(k) 2 Ci
0 otherwise

(6)

The likelihood of the network parameters is given by (see
e.g., [2], [7]),

p(T jw) =

NtY
k=1

p(y(k)jx(k);w) =

NtY
k=1

cY
i=1

(byi(k))yi(k) (7)

where by(k) = by(x(k);w) is a function of the input and
weight vectors. The training error is the normalized nega-
tive log-likelihood

ST (w) = �
1

Nt

log p(T jw) �
1

Nt

NtX
k=1

` (y(k); by(k);w) (8)

with `(�) denoting the loss given by

` (y(k); by(k);w) = cX
i=1

�yi(k) log(byi(k)) (9)

Making an comparison with M-estimates considered in ro-
bust statistics [8], we note that the loss for a speci�c ex-
ample is ` = � log(byi) =  (`0) where `0 = � log(bzi) is
the non-robust loss (" = 0) and  (�) is a function which
downweights extreme losses3.

The objective of training is minimization of the regu-
larized cost function4

C(w) = ST (w) +R(w;�) (10)

where the regularization term R(w;�) is parameterized by
a set of regularization parameters �. Training provides the
estimated weight vector bw = arg minw C(w) and is done
using a Gauss-Newton scheme (see e.g., [11]),

w
new = w

old � � � J�1(wold)r(wold) (11)

where � is the step-size (line search parameter). For that
purpose we require the gradient, r(w) = @C=@w, and

3 (`) = � log(e�`(1 � �c) + �).
4This might be viewed as a maximum a posteriori (MAP)

technique.

the Gauss-Newton approximation5, J(w), of the Hessian
@2C=ww> which can be written as

@C

@w
(w) =

�c� 1

Nt

NtX
k=1

cX
i=1

@bzi
@w

yi(k)byi +
@R(w;�)

@w
; (12)

J(w) =
(1� �c)2

Nt

NtX
k=1

cX
i=1

bziby2i @bzi@w

@bzi
@w>

+
@2R(w;�)

@w@w>
: (13)

where

@bzi
@w

= bzi c�1X
j=1

(�ij � bzj)@�j
@w

; 1 � i � c� 1; (14)

@bzc
@w

= �bzc c�1X
j=1

bzj @�j
@w

: (15)

By convenience, the dependency of bzi, byi and �i on x(k)
and w is omitted, and �ij denotes the Kronecker delta.

4. ADAPTING REGULARIZATION
PARAMETERS AND OUTLIER PROBABILITY

The available data set, D, of N examples is split into two
disjoint sets: a validation set, V, with Nv = dNe examples
for estimation of regularization and outlier probability, and
a training set, T , with Nt = N�Nv examples for estimation
of network parameters.  is referred to as the split-ratio.
The validation error of the trained network is given by

SV(bw) = 1

Nv

NvX
k=1

` (y(k); by(k); bw) (16)

where the sum runs over theNv validation examples. SV(bw)
is thus an estimate of the generalization error de�ned as the
expected loss: G(bw) = Ex;yf`(y; by; bw)g, where Ex;yf�g
denotes the expectation w.r.t. the joint input-output distri-
bution.

Let � = [�; �] be the vector of all regularization param-
eters and the scaled outlier probability. Aiming at adapting
� so as to minimize the validation error we apply the iter-
ative scheme suggested in [1], [9], [10]:

�
new = �

old � �
@SV
@�

(bw(�old)) (17)

where � is a step-size and bw(�old) is the estimated weight
vector using �old. Suppose that

R(w;�) = �
>
r(w) =

qX
i=1

�iri(w) (18)

where �i are the regularization parameters and ri(w) the
associated regularization functions. The gradient of the val-
idation error then equals [9], [10]:

@SV
@�

(bw) = �
@r

@w>
(bw) � J�1(bw) � @SV

@w
(bw); (19)

5This is obtained using Fisher's property: E[@2L=@w@w>] =
E[@L=@w @L=@w>] where L = � log p(T jw).



@SV
@�

(bw) = �
1

Nv

NvX
k=1

cX
i=1

1� cbzi(bw)byi(bw) yi(k)

�
@SV
@w>

(bw) � J�1(bw) � 1

Nt

NtX
k=1

cX
i=1

@bzi
@w

(bw) yi(k)by2i (bw) : (20)
In order to ensure that �i � 0 and 0 � � � 1=(c � 1) we
perform a reparameterization,

�i =
n

exp(�i); �i < 0
�i + 1 ; �i � 0

� =
1 + tanh()

2(c� 1)
;  2 R (21)

and carry out the minimization w.r.t. the new parameters
� and  assembled in the vector � = [�; ]. Note that

@SV
@�i

=
@SV
@�i

�
@�i
@�i

: (22)

In summary the algorithm for adapting regularization pa-
rameters and outlier probability is:

1. Select the split ratio  and initialize �, � and the weights
of the network.

2. Train the network with �xed � to achieve bw(�). Calcu-
late the validation error SV .

3. Calculate the gradient @SV=@� cf. Eq. (19), (20). Initial-
ize the step-size �.

4. Update � using Eq. (17), (21), train the network from
the previous weights and calculate SV .

5. If SV decreases repeat: double �, update �, retrain weights
and recalculate SV until no decrease is noticed then goto
step 7.

6. Repeat: perform bisection of �, update �, retrain weights
and recalculate SV until a decrease is noticed, then con-
tinue.

7. Repeat steps 3{6 until the relative change in validation
error is below a small percentage or, e.g., k@SV=@�k is
below a small number.

5. OUTLIER DETECTION

Once the network is designed, i.e., we have estimates of the
weights, regularization parameters and outlier probability6,
it is possible to devise a method for outlier detection. Sup-
pose we want to decide whether an example x with la-
bel Ci is an outlier or not. De�ne the binary variable
O which is 1 if the example is an outlier, and zero oth-
erwise. The probability that the example is an outlier
is given as poutlier = p(O = 1jx; Ci). Using Bayes rule,
poutlier = p(O = 1jx; Ci) = p(O = 1 ^ Cijx)=p(Cijx): The
denominator is given by Eq. (2) and the numerator is the
posterior probability for Ci in the case of outliers which is
equal to the last addend of Eq. (1). Thus7,

poutlier =
�(1� p0(Cijx))

p0(Cijx)(1� �c) + �
: (23)

The estimated probability that the example is an outlier is

consequently, bpoutlier = b�(1� bzi)=byi.
6In this contribution we do not include network pruning as

an element in the design phase; however, this is easily done, see
further [1], [9], [10].

7Note poutlier = 0 for " = 0 and poutlier = 1 for " = 1.

6. EXPERIMENTS

We �rst test the performance of the algorithm on an arti-
�cial example with c = 3 classes in a 2D input space. The
class conditional probabilities are p(xjCi) = [N (�i; I) +
N (��i; I)]=2 where N (�; I) is a 2D Gaussian distribution
with mean vector � and identity covariance matrix. The
mean vectors are given by�i = 3�[cos(�(2i�1)=6); sin(�(2i�
1)=6)], i = 1; 2; 3. The prior class probabilities are p(Ci) =
1=3. We generated N = 300 data and used Nt = 150
for training and Nv = 150 for validation. In addition
we generated a test set of Ntest = 600. Further, we in-
troduced outliers by changing class labels with probabil-
ity " = 0:08. Suppose that the network weights are given
by w = [wI ;wI

bias;w
H ;wH

bias] where w
I , wH are input-to-

hidden and hidden-to-output weights, respectively, and the
bias weights are assembled inwI

bias andw
H
bias. In this exam-

ple, we use the following weight decay regularization term:

R(w;�) = �I jwI j2+�Ibiasjw
I
biasj

2+�H jwH j2+�Hbiasjw
H
biasj

2

(24)
where � = [�I ; �Ibias; �

H ; �Hbias]. The simulation set-up was:

� Network: 2 inputs, 5 hidden neurons, 2 outputs.
� Weights were initialized uniformly over [�0:5; 0:5], regu-
larization parameters were initialized at zero. 30 steps in
a gradient descent training algorithm (see e.g., [11]) was
performed and the weight decays, �, were re-initialized
at �max=10

4, where �max is the max. eigenvalue of the
Hessian matrix of the cost function. This prevents initial
numerical stability problems. " is initialized at 0:01.

� Training is now done using a Gauss-Newton algorithm
(see e.g., [11]). The Hessian is inverted using the Moore-
Penrose pseudo inverse (see e.g., [11]) ensuring that the
eigenvalue spread8 is less than 108.

� The step-size � in Eq. (17) is initialized at 1 and � is
adapted until the validation error has reached a minimum.

� Finally, weights are retrained on the combined set of
training and validation data using the optimized weight
decay parameters and outlier probability.

Table 1 reports the average and standard deviations of
the probability of misclassi�cation (pmc) over 10 runs using
the optimal � and �. Note that retraining on the full data
set decreases the test pmc slightly on average; improvement
was found in 5 out of 10 runs.

In Fig. 1 a typical run of the � adaptation algorithm
is shown. We tested the possibility to detect whether spe-
ci�c examples in the data set, e.g., the combined train-
ing/validation set, are outliers and the result is summarized
in Table 2. This technique can e.g., be applied to manual
inspection of examples which are likely to be outliers. This
might lead to relabeling or discovery of new interesting fea-
tures of the problem.

7. CONCLUSIONS

This paper presented a new framework for design of ro-
bust neural classi�ers by invoking a probabilitistc model
for outliers. We devised an iterative scheme for simultane-
nous adaptation of regularization parameters and the out-
lier probabilty. Moreover, we discussed the possibility of
detecting outliers. Numerical examples demonstrated the
potential of the framework.

8Eigenvalue spread should not be larger than the square root
of the machine precision [4].



Initial Optimal Optimal
Neural Neural Bayes
Net Net Decisions

Train. 0:141 � 0:010 0:145 � 0:011 0:160
Val. 0:266 � 0:029 0:241 � 0:012 0:240
Test 0:278 � 0:013 0:250 � 0:009 0:222
Test after
retrain.

0:268 � 0:008 0:249 � 0:012 0:222

Table 1: Probability of misclassi�cation, when outlier prob-
ability is " = 0:08. For the neural network the averages
and standard deviations over 10 runs are reported. Inital
and optimal neural net refers to using initial and optimized
setting of � and ". Optimal Bayes decisions boundaries
are calculated from the detailed knowledge of the true pos-
terior probabilities. The minimal Bayes error on an in�-
nite set is 0:213. The outlier probability was estimated asb" = 0:097 � 0:018.

True

Estimated not outlier outlier
not outlier a = 0:911 � 0:017 b = 0:142 � 0:022
outlier c = 0:089� 0.017 d = 0:858 � 0:022

Table 2: Confusion matrix for outlier detection (over 10
runs) on the combined training/validation set. An example
is considered not to be an outlier if 1 � bpoutlier > 0:9. The
aim is, e.g., to set the threshold so that the false positive
rate b=(b+ d) is acceptable small.
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Figure 1: Typical run of the � adaptation algorithm. In
panel (a) the evolution of the outlier probability " = �(c�1)
is shown. Panel (b) shows the adaptation of the normalized
weight decays � = � � Nt, and in panel (c) the training,
validation and test errors are depicted.
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