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ABSTRACT
 In continuous speech recognition featuring hidden Markov
model (HMM), word N-gram and time-synchronous beam
search, a local modeling mismatch in the HMM will often cause
the recognition performance to degrade. To cope with this
problem, this paper proposes a method of restructuring Gaussian
mixture pdfs in a pre-trained speaker-independent HMM based
on speech data. In this method, mixture components are copied
and shared among multiple mixture pdfs with the tendency of
local errors taken into account. The tendency is given by
comparing the pre-trained HMM and speech data which was
used in the pre-training. Experimental results prove that the
proposed method can effectively restore local modeling
mismatches and improve the recognition performance.

1. INTRODUCTION
 In continuous speech recognition featuring hidden Markov
model (HMM), word N-gram and time-synchronous beam
search, a local acoustic modeling mismatch will often cause a
likelihood score to fall locally. This may get a correct word
sequence pruned away from recognition hypotheses or ranked
low among all of the recognition hypotheses. Such a local
acoustic modeling mismatch is frequent, especially in the
recognition of speech by unrestricted speakers where a wide
variety of speakers' individualities are dealt with, and in the
recognition of spontaneous speech where spectral features are
heavily deformed. It is crucial to overcome such modeling
mismatches to achieve accurate recognition of speaker-
independent and spontaneous speech.
 So far, a few methods based on an operation in likelihood score
during search process to avoid wrong pruning have given
tentative solutions for this problem [1],[2]. These methods,
however, are unable to solve the root problem, that is, some
acoustic phenomena are not properly modeled. Acoustic models
themselves should be improved based on acoustic phenomena to
solve the root problem.
 This paper proposes a method of restructuring Gaussian mixture
probability density functions (pdfs) in a pre-trained speaker-
independent HMM set. In this method, which aims at modeling
several acoustic phenomena more properly, the number of
components in each mixture pdf is inflated by copying new
components from other mixture pdfs with the tendency of local
errors taken into account. The tendency is given by comparing
the pre-trained HMM set and speech data which was used in the
pre-training. As each of the copied components is shared
between source and destination mixture pdfs, the total number of
Gaussian pdfs in the HMM set does not increase.
 In section 2, basic ideas of the proposed method are described.
Section 3 gives experimental results of the proposed method and
speech recognition using a newly yielded HMM set to show the
improvement in recognition performance. In section 4, the effect
of restoring the local acoustic modeling mismatch is verified
using examples of speech recognition results.

2. BASIC IDEAS
2.1 Overview of Restructuring Procedure
 We assume that we can start with an initial HMM set yielded
with conventional algorithms.

 Gaussian mixture pdfs in the initial HMM set are restructured
using speech data. Then, the model parameters in the restructured
HMM set are re-estimated to yield an object HMM set. Since we
use the same speech data in the restructuring and re-estimation as
in the initial HMM set generation, we do not need new speech
data. This is one of advantages of the proposed method (Fig. 1).
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Fig. 1 HMM generation procedure using restructuring
2.2 Copying Mixture Components
 The core technique of the proposed method is to inflate the size
of each mixture pdf by copying new components from other
mixture pdfs with the tendency of frame-level errors taken into
account.
 Here, we define that frames satisfying the following condition
are in the frame-level error [3].

gt ≠ Q(ot|γ)argmax
γ∈ Γ (1)

where,
ot : The observation feature vector at frame t
gt : The Gaussian mixture pdf assigned to frame t by the

Viterbi alignment
Γ : A set of Gaussian pdfs in the initial HMM set
Q(o|g ) : The likelihood of a distribution g generating an

observation o.

 In the following discussions, event E will denote the frame level
error and Ec will denotes the complimentary event of E.
 If frames at which frame-level errors occur frequently due to a
Gaussian mixture pdf have similar acoustic features, the
Gaussian mixture pdf will tend to fall in acoustic likelihood score
when the acoustic features are examined on correct hypotheses in
speech recognition.
 Now, we consider a Gaussian pdf for a frame t,

ξ∈ Ξ
xt = Q(ot|ξ)argmax

. (2)
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Fig. 2 Component copy operation based on frame level error

Although xt is one of the mixture components in the HMM set,
we treat it here as a single Gaussian mixture pdf that gives the
maximal likelihood score for the frame t.
 {xt} is a series composed by elements ξ  in the set Ξ and gives
the maximal likelihood score for a feature vector series {ot}. We
can also consider a series of Gaussian mixture pdfs {gt} which is
composed by elements γ in the set Γ and which gives the Viterbi
path for {ot}. We call these two series the most likely series of
Gaussian pdfs and the Viterbi series of Gaussian mixture pdfs,
respectively.
 Then, a conditional distribution of frame level error occurrences
P(E,ξ |γ) (γ∈ Γ, ξ∈ Ξ) can be given by analyzing the frequency of
each element emerging in {gt} and {xt}. If the probability
P(E,ξ |γ) is large for a ξ , we can guess that the Gaussian mixture
pdf ξ  will fall in the acoustic likelihood score when frames
whose acoustic features can be well modeled by γ are examined.
Note that such falls can be restored by copying γ to ξ  as a new
component.
2.3 Gaussian Mixture Restructuring Procedure
 Mixture components are copied and shared by the following
procedure.
(Step-1) Align the initial HMM set and speech data by Viterbi

decoding and get the most likely series of Gaussian
pdfs {xt} and the Viterbi series of Gaussian mixture
pdfs {gt} (Fig. 2).

(Step-2) Calculate the conditional probabilities of frame level
error occurrences P(E,ξ |γ) for all combinations of ξ
and γ by analyzing {xt} and {gt}. (Fig. 2)

(Step-3) Do Step-4 for all γ.
(Step-4) Do Step-5 for all ξ.
(Step-5) Copy ξ  to γ as a new component, if P(E,ξ |g) exceeds

the pre-determined threshold value. The copied
components are shared between source and destination
mixture pdfs (Fig. 2, Fig. 3).

The threshold in Step-5 is expected to suppress copy-activation
for accidental frame level errors caused by noise or something
else in the speech data.

2.4 Parameter Re-estimation
 After Gaussian mixture pdfs in the initial HMM set are
restructured, the model parameters are re-estimated with a
criterion such as maximum likelihood, maximum likelihood
ratio, or something else.
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Fig. 3 Component sharing

 The values of Gaussian means, Gaussian variances, and state
transition probabilities in the initial HMM set are used as initial
parameter values for the re-estimation. For mixture weights,
initial values are determined as follows.
 When Gaussian pdf ξ  is copied to Gaussian mixture pdf γ as a
new component, the initial mixture weight for the new
component is given by,

w ξ
γ
 = P(E ,ξ | γ) . (3)

The mixture weights of original components should also be
adjusted to keep the summation of the weights equals to 1. They
are given by,

 
w ξ

γ
 = P(Ec | γ) + P(E ,Ξρ

γ
 | γ)  • wξ

γ 
(4)

where,
wγ

ξ : The mixture weight for a Gaussian pdf ξ  as a
component of a Gaussian mixture pdf γ

Here, Ξγ
ρ is a set of Gaussian pdfs which are not copied to γ

when the threshold is ρ, and is given by,

Ξρ
γ
 = {ξ | P(E ,ξ | γ) < ρ ; ξ ∈ Ξ } . (5)

3. EXPERIMENTS
3.1 Restructuring Gaussian Mixture Pdfs
 Gaussian mixture pdfs in a pre-trained (initial) HMM set were
restructured by the method described in section 2.
 A set of state-shared context-dependent HMMs (HMnet) was
used as the initial HMM set. The HMnet was yielded by ML-SSS
algorithm [4] using spontaneous speech of 175 Japanese male
speakers from ATR Travel Arrangement Corpus [5],[6]. The
conditions employed for the HMnet are summarized in Table 1
and Table 2.
 Gaussian mixture pdfs in the HMnet were restructured at the
copying threshold of 0.01 using the above mentioned
spontaneous speech. The original total number of 4,000
components increased to 6,603 (copied 2,603 times) through this
restructuring. In addition, the mixture sizes, which had been 10
for all of the mixture pdfs, became distributed from 10 to 36 (Fig.
4).



Table 1 Conditions of acoustic analysis
 Sampling freq. : 12 kHz
 Quantization : 16 bit linear
 Pre-emphasis : 1 - 0.97z-1
 Window : 20 ms Hamming
 Frame shift : 10 ms
 Feature vector : log-power + 16-order LPC-Cep. +

∆log-power + 16-order ∆Cep.

Table 2 Topological conditions of initial HMM set
 401 state male-speaker independent HMnet
     400 states for state-shared allophone HMMs
         (Triphone-context-dependent HMMs)
     1 state for a silence HMM
 Acoustical units : Japanese 25 phonemes + silence
 Mixture size: 10 mixture/state
 Covariance type: Diagonal
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Fig. 4 Frequencies of mixture sizes after restructuring
 The relationships between source and destination mixture pdfs
were also examined. It was found that more than half of the cases
of component copy operations were activated between mixture
pdfs representing the same center phoneme. The HMnet used in
this work was yielded by splitting states of context-independent
HMMs successively in the contextual or temporal domain [4].
We suppose that a component copy operation between two
identical center phonemes mainly restores mismatches caused by
sub-effects in the process of state splitting.
 The most frequent source and destination combinations in the
cases of different center phonemes are shown in Fig. 5. We can
see that component copy operations were activated frequently
between phonemes acoustically similar or tending to be co-
articulated with each other.
3.2 Parameter Re-estimation
 The model parameters in the restructured HMM set were re-
estimated. Although it is possible to enhance the effectiveness of
restructuring by choosing an appropriate estimating criterion, the
maximum likelihood criterion was employed in this work, as in
the initial HMM set generation, in order to evaluate the pure
effect given by the restructuring itself.
 The following model parameters were re-estimated by the
Baum-Welch algorithm using the above mentioned spontaneous
speech of 175 male speakers.

• Gaussian means
• Gaussian variances
• Mixture weights
• State transition probabilities

3.3 Continuous Speech Recognition Tests
 Continuous speech recognition tests were carried out using the
HMM set given by the restructuring and the re-estimation
(Restructured HMM set) in order to evaluate how the recognition
performance was improved in comparison with the tests using
the initial HMM. The experimental conditions were as follows.
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Fig. 5 Frequencies of component copy operations between
different center phonemes

• Continuous speech recognizer:
A recognizer featuring multi-pass search and word-graph
outputs [7]

• Language model :
Variable-length word class N-gram [8], 500 classes in total

• Lexicon :
6,922 words

• Test data :
Speaker-open 7 males' spontaneous speech data
The Travel Arrangement Corpus
81 utterances, 937 words (accumulative)

• Evaluation :
The word accuracy and the word %correct for the most
likely path in the word graph

 The beam width and the language model scale were set
experimentally so that the initial HMM set could perform at its
best accuracy.
 Fig. 6 shows the recognition performance achieved with the
language model scale varied around the best setting for the initial
HMM set. We can see that the Restructured HMM set given by
the proposed method (Restructured) outperformed the initial
HMM set (Baseline) in both accuracy and %correct.

4. DISCUSSION
 In order to verify that the improvement in the recognition rate
described above was certainly given by restoring local acoustic
modeling mismatches, temporal behaviors of acoustic likelihood
scores in the correct recognition hypotheses were compared
between the initial HMM set and the Restructured HMM set.
 Since the speech recognizer used in this work employed a beam
search based on the difference in likelihood from the most likely
hypothesis, the differences were also compared to see how
correct hypotheses could possibly be pruned.
 We found that falls in likelihood were effectively restored in
most of cases of the performance improvement as shown in the
following two examples.

(Example 1)
 soo de su ka dewa hjakudoru no heja o onegaishimasu
 • Recognized with the initial HMM set :

soo de su ka zhja shita kodomo na ija onegaishimasu
 • Recognized with the Restructured HMM set :

soo de su ka zhja shita kodomo no heja o
onegaishimasu

(Example 2)
 zhjuugatsu tooka ni juuzhin to iqpaku sa se teitadaki ta i
ng de su ga
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Fig. 6 Comparison in the recognition performance
 • Recognized with the initial HMM set :

zhjuugatsu tooka ni ire te ru to i i ta ku to de teitadaki ta
i ng de su ga

 • Recognized with the Restructured HMM set :
zhjuugatsu tooka ni ire te ru to iqpaku sa se teitadaki ta
i ng de su ga

 For Example 1, the temporal behavior of the acoustic likelihood
score near "no heja o", which was recognized correctly with
only the Restructured HMM set, is shown in Fig. 7 We can see
the fall around the 100th frame was restored. The hypotheses
including "no heja o" by the initial HMM set were ranked below
in the word graph. The proposed method properly restored local
acoustic modeling mismatches and this pushed up the more
accurate hypothesis to the first order.
 For Example 2, the temporal behavior of the acoustic likelihood
score near "iqpaku sa se", which was recognized correctly with
only the Restructured HMM set, is shown in Fig. 8. Falls were
restored at several points. The speech portion "iqpaku sa se"
was pronounced rather dis-fluently and we could not find any
hypotheses that included "iqpaku sa se" in the word graph
given by the initial HMM set. The proposed method successfully
kept the more accurate hypothesis in the word graph and ranked
it to be of the first order.

5. CONCLUSION
  A method of restructuring Gaussian mixture pdfs in a speaker-
independent HMM based on speech data was proposed.
Experimental results have proven that the proposed method
effectively restores local acoustic modeling mismatches and
improves the recognition performance. As future work, a study is
being planned on a more appropriate model parameter re-
estimation to enhance the effectiveness of the proposed method.
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