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ABSTRACT

This paper addresses the problem of on-line, writer-
independent, unconstrained handwriting recognition. Based
on hidden Markov models (HMM), we focus on the con-
struction and use of word models which are robust towards
contextual character shape variations and variations due to
ligatures and diacriticals with the objective of an improved
word error rate. We compare the performance and com-
plexity of contextual hidden Markov models with a ‘pause’
model for ligatures. While the common contextual models
lead to a word error rate reduction of 12.7%-38% at the cost
of almost six times more character models, the pause model
improves the word error rate by 15%-25% and adds only
a single model to the recognition system. The results for
a mixed-style word recognition task on two test sets with
vocabularies of 200 (up to 98% correct words) and 20,000
words (up to 88.6% correct words) are given.

1. INTRODUCTION

In this paper, we address the problem of handwriting mod-
eling in the context of an on-line handwriting recognition
system based on hidden Markov models. This approach
to handwriting is well-established now [2, 4, 6, 9]. The
writer-independent system processes characters, words, and
sentences. Each character is modeled by a hidden Markov
model and a word or sentence is modeled as a sequence
of hidden Markov models. We focus on the recognition
of mixed-style, handwritten words and exploit knowledge
about the handwriting structure to adapt the word models to
minimize the character shape variation due to ligatures, to
train more accurate models and to minimize the word recog-
nition error rate.

In general, handwriting exhibits a natural variation
where the character shape depends on the neighboring char-
acters and the ligatures between the characters. Other hand-
writing properties include delayed strokes or diacriticals,
e.g., the dot on the ‘i’. As an example, consider the shape of

the ‘n’ in the cursive, handwritten text ‘on’ and ‘in’. It is ob-
vious that the shape of the ‘n’ depends on the neighbor char-
acter, i.e., the character shape is context-dependent. In this
example, the shape variation is mainly caused by the liga-
ture connecting the two characters. Even discrete handwrit-
ing without written ligatures exhibits the contextual shape
variations of neighboring characters.

Because the recognition depends on the character
shapes, and not on the ligature shapes, we attempt to min-
imize the effect of the ligatures on the character shapes
with either contextual or ligature models. First, we employ
context-dependent models, which are called trigraphs or bi-
graphs in handwriting recognition. This approach is very
common in speech recognition [5, 7] and is also applied
in handwriting recognition [4, 9]. The context-dependent
models automatically model the connection with the previ-
ous and next character.

Second, we introduce a ligature or ‘pause’ model sim-
ilar to [1] which explicitly models the transition between
two characters. Therefore, the data describing the char-
acter shape itself exhibits less variation. This approach
also merges the difference between discrete and cursive
style handwriting, i.e., pen-up or pen-down ligatures, in one
model. In contrast, contextual models have to include both
the discrete and cursive variation of the trigraph. Optionally,
the ‘pause’ model is also used to model delayed strokes, e.g,
a dot on the ‘i’ in the word ‘in’ which is placed on the ‘i’
after writing the ‘n’ and not after the body of the ‘i’. Such
a model at the end of a word is called a ‘backspace’ model
and was introduced by [9]. The advantage of the approach is
that there is no need for explicit detection and preprocessing
of the delayed strokes as in [8].

In Section 2, we introduce the properties of our hand-
writing recognition system and the handwriting data used
for training and testing. In Section 3, we discuss the pause
model while Section 4 explores the context-dependent mod-
els. We conclude with Section 5 where we compare the ap-
proaches by means of experimental results.



2. SYSTEM OUTLINE

The platform for capturing handwriting is a Philips pro-
prietary tablet called Philips Advanced Interactive Display
(PAID) consisting of an LCD plus orthogonal sensors for
pen and finger input sampling a stream of(x; y) coordinates
with up to 200 pps. This tablet is connected to a PC with
pen-enhanced Unix or (Pen)Windows.

The preprocessing converts the sampled handwriting to
the size-independent segment representation and computes
19 components per feature vector [2]. Each lower-case char-
acter is modeled by a left-to-right hidden Markov model
containing five states with loop, forward and skip transitions
probabilities which are estimated during the training pro-
cess. The observation probabilities are continuous mixtures
of Gaussian densities with density-specific diagonal covari-
ance matrices. Up to 32 densities per mixture are allowed.
Training of the hidden Markov model parameters is done by
using the Maximum Likelihood criterion and applying the
Viterbi approximation [7]. Recognition is based on a one-
stage beam search algorithm using a tree-organized dictio-
nary and vocabularies of 200 and 20,000 words.

For the experiments reported here the training data con-
sisted of more than 10,000 handwritten words from about 60
writers of several nationalities from on-site collected data
and Unipen training data [3]. Two test sets are used writ-
ten by the same 10 writers. The datasetMixed1 contains
500 words while the datasetMixed2contains 2483 words
hand-segmented from sentences. The datasetMixed2con-
tains a lot of short words with only two or three characters.
A number of samples are shown in Figure 1.

Figure 1: Test set data samples.

3. PAUSE MODEL

Like trigraph modeling, a pause model is an attempt to iso-
late the variability of character transitions. Consequently,
the context-free character models will contain fewer vari-
able shapes. Examples of other approaches where the struc-
ture of the hidden Markov model is adapted in order to bet-
ter match the handwritten input are state-duration modeling,

the ‘backspace’ state [9], and the ligature model [1].
We assume that�c is the hidden Markov model of

a characterc and contains five states. To minimize
the character shape variations due to character transi-
tions and ligatures, we introduce a single ‘pause’ model
�p which consists of one state. Based on this model,
we extend the word model of wordwi with l(wi) char-
acters from �wi

= �c1 ; �c2 ; : : : ; �cl(wi)
to �

0

wi
=

�c1 ; �p; �c2 ; �p; : : : ; �p; �cl(wi)
in order to include pauses

between subsequent characters. This is graphically shown
in Figure 2. The transition probabilities of both the charac-
ter and ‘pause’ models are reestimated during the training
process.

i n

i nPause

Figure 2: A hidden Markov model of the word ‘in’ with
(bottom) and without (top) an intermediate ‘pause’ model
which is colored black.

In [1], ligature models in an off-line word recognition
task are used resulting in an improvement of the recognition
accuracy by 20% to 45%, depending on the dictionary size.
That approach uses a number of pause models describing
categories of character transitions depending on the neigh-
boring characters. In contrast, we modelall ligatures with
the same pause model. This is based on the assumption
that the number of ligature types is limited. The number of
observations is one for a pen-up ligature and variable for a
pen-down ligature.

We experimentally investigated the effect of the ‘pause’
model on the word error rate. The hidden Markov mod-
els are trained based on�

0

wi
instead of�wi

using an oth-
erwise unchanged training procedure. The results of the
experiment are summarized in Table 1. The models with
‘pause’ always produce the best results. The relative reduc-
tion in word error rate compared to the ‘no-pause’ models
is 20%-25% for a 200 word vocabulary and around 15% for
a 20,000 word vocabulary. An additional experiment where
we used the ‘pause’ model also as ‘backspace’ model did
not result in an improved word error rate.

The interpretation of these results is that the ligature
shapes have effect of the recognition performance. If the
ligatures are trained together with the character models, the
ligatures add an extra source of variation to the character
shapes, i.e., the character models include the ligature data as
extra noise. The ‘pause’ model separates the ligature shape
variations from the character shape variations. This leads to



Table 1: Recognition results in word error rate [%] using
models with and without a ‘pause’ model and two test sets.
The mean error rate per writer is indicated as� while the
standard deviation is indicated as�.

Vocabulary size
Mixed1Model type

200 20,000
� (�=2.3) � (�=11.5)

No pause 2.7 16.5
Pause 2.0 13.9

Vocabulary size
Mixed2Model type

200 20,000
� (�=6.6) � (�=12.1)

No pause 11.0 26.9
Pause 8.7 23.2

more accurate character models and a more accurate recog-
nition.

Finally, we observe that the recognition performance of
the datasetMixed2 is generally inferior toMixed1. This
is due to the average word lengths in the datasets. A
short word simply provides less context compared to longer
words and the more context, the better the recognition re-
sult. A similar effect was observed by [8].

4. CONTEXTUAL MODELS

It is known that character-based, contextual hidden Markov
models, such as trigraphs, improve the recognition perfor-
mance of a writer-dependent handwriting recognition sys-
tem [4, 9]. However, [9] does not compare contextual with
context-free models and therefore, the benefit due to con-
textual models remains unclear. More recently, [4] ap-
plied trigraphs to a writer-dependent, on-line handwritten
word recognition task and achieved an error-rate reduction
of 50% for a 1000 word vocabulary and 35% for a 30,000
word vocabulary.

A trigraph models a character given both a left and right
contextual character. We denote such a trigraph model of a
characterc as�flgcfrg. A bigraph is a contextual character
model with either left or right context, i.e.,�flgc or �cfrg.

In contrast to the previous section where a wordwi with
l(wi) characters is modeled as�wi

= �c1 ; �c2 ; : : : ; �cl(wi)
,

the contextual model of the wordwi is �
00

wi
=

�f#gc1fc2g; �fc1gc2fc3g; : : : ; �fcl(wi)�1gcl(wi)f$g
where #

and$ are the markers for word start and end, respectively.
Such a word model implicitly models the ligatures between
the characters and does not include ‘pause’ models.

The number of possible trigraphs given 26 lower-case
characters is263. In spite of the fact that some charac-
ter combinations do not occur in English, the number of
possible trigraphs is too large to reliably train each hidden
Markov model. Therefore, we have to balance the available
training data and the number and kind of models which was
referred to as ‘trainability versus specificity’ in [5].

The algorithm to select appropriate trigraphs and bi-
graphs is simple. We parse all the training text and calcu-
late the number of occurrences of characters, bigraphs and
trigraphs. We add a given trigraph to the set of models if
its count exceeds a threshold. The threshold has to be high
enough, e.g., 30 as a minimum, to guarantee enough train-
ing data for each model. Bigraphs are added if their count
exceeds the same threshold and if the bigraph is not part of
an accepted trigraph. For example, the set of 147 contex-
tual models with at least 200 training samples in Table 2
includes 18 trigraphs, 100 bigraphs, and 26 unigraphs or
context-free models.

The training procedure for contextual models is based
on the training of the context-free models, without ‘pause’
model, in the previous section. We determine the set of con-
textual models as described above. After that, we initialize
all models�flgcfrg with the parameters of�c and continue
with a number of additional Viterbi training iterations based
on the time-alignment of the last, context-free training iter-
ation.

The results of the writer-independent recognition exper-
iment with vocabularies of 200 and 20,000 words on the
basis ofMixed1andMixed2with an increasing number of
contextual models are summarized in Table 2.

Table 2: Effect of an increasing number of contextual mod-
els on the mean word error rate [%]. Results are obtained
with a 200 and 20,000 word vocabulary and two data sets. A
contextual model is created if at least the number of samples
in parentheses is observed in the training material.

Models Dataset and vocabulary size
Mixed1 Mixed2#models #densities

200 20K 200 20K
26 ( - ) 3009 2.7 16.5 11.0 26.9

26 ( - ) 3946 2.9 13.7 8.1 23.7
66 (300) 8979 2.0 13.5 5.8 21.3

147 (200) 17394 1.8 11.4 6.5 20.7
284 (100) 25763 2.2 13.5 6.8 21.1
476 ( 60 ) 31964 3.1 18.8 7.3 23.0
878 ( 30 ) 35314 4.3 21.7 8.7 27.8

First, it is observed that the additional training iterations
with a constant number of models and based on the com-



puted time-alignment reduce the word error rate. This is
shown in Table 2 as the difference between the first and sec-
ond line of results with 26 models.

Second, the table shows that the word error rate does not
decrease monotonously with the increase in the number of
models but instead reaches a minimum word error rate and
increases again. This effect is expected and caused due to
the trade-off between robust and detailed models in combi-
nation with the available training data per model [4, 5].

The best results are reached with the use of 147 contex-
tual models, which is a word error rate of 11.4% (� = 7:7)
and 20.7% (� = 9:3) with a 20,000 word vocabulary for
the datasetsMixed1andMixed2, respectively. The error re-
duction in the experiment with 147 contextual models and
a 20,000 word vocabulary is 16.8% and 12.7% for the data
setsMixed1andMixed2, respectively. The experiment with
a 200 word vocabulary achieves an error-rate reduction of
38% and 19.8% withMixed1andMixed2, respectively.

5. CONCLUSION

We have compared the effect of pause and contextual mod-
els on the word error rate given two different test sets. The
pause and contextual models decrease the word error rate
by 15%-25% and 12.7%-38%, respectively. Overall, the
best word error rates forMixed1andMixed2are 11.4% and
20.7%, respectively.

Table 3: Complexity comparison of contextual and ‘pause’
models wherel(wi) is the number of characters in wordwi

and the word length is given in number of states.

Model type #Models #Densities Word length
Contextual 26 3946 5 � l(wi)
Contextual 147 17394 5 � l(wi)
Pause 26 + 1 3009 + 32 6 � l(wi) -1

Compared to the pause model, the use of the contextual
models leads to a larger word error rate improvement at the
cost of a large increase of the number of models. The recog-
nition system using the ‘pause’ model contains 26 charac-
ter models plus one additional ‘pause’ model containing a
maximum of 32 densities. The best performing recogni-
tion system with contextual models contains 147 character
models. Although the number of models increases by al-
most a factor of six, the number of densities increases only
by a factor 4.4, as presented in Table 3, because the tri-
graphs and bigraphs are often modeled with less densities
compared to context-free models. The change in the total
number of distance calculations depends on the combined
effect of pruning threshold and the more specific contextual
models which affect the beam width. The addition of the

pause model increases the number of states per word model
as presented in Table 3. This means that the search space is
enlarged by approximately a factor of6=5.

To summarize, the contextual models yield a larger
word error rate improvement but increase the number of
densities in the recognition system. The use of the pause
model improves the word error rate based on only a few ad-
ditional densities at the cost of a slightly larger search space.
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