
ADAPTIVE REGULARIZATION OF NEURAL NETWORKS USING

CONJUGATE GRADIENT

Cyril Goutte and Jan Larsen

connect, Department of Mathematical Modelling, Building 321
Technical University of Denmark, DK-2800 Lyngby, Denmark

emails: cg,jl@imm.dtu.dk
www: http://eivind.imm.dtu.dk

ABSTRACT

Recently we suggested a regularization scheme which
iteratively adapts regularization parameters by mini-
mizing validation error using simple gradient descent.
In this contribution we present an improved algorithm
based on the conjugate gradient technique. Numerical
experiments with feed-forward neural networks success-
fully demonstrate improved generalization ability and
lower computational cost.

1. INTRODUCTION

Neural networks are exible tools for regression, time-
series modeling and pattern recognition which �nd ex-
pression in universal approximation theorems [6].

The risk of over-�tting on noisy data is of major
concern in neural network design, as exempli�ed by the
bias-variance dilemma, see e.g., [5]. Using regulariza-
tion serves two purposes: �rst, it remedies numerical
instabilities during training by imposing smoothness on
the cost function; secondly, regularization is a tool for
reducing variance by introducing extra bias. The over-
all goal is to minimize the generalization error, i.e., the
sum of the bias, the variance, and inherent noise.

In recent publications [1], [10], [11] we proposed an
adaptive scheme for tuning the amount of regulariza-
tion by minimizing an empirical estimate of the gener-
alization error, e.g., the hold-out cross-validation error
or K-fold cross-validation error. The adaptive scheme
was based on simple gradient descent which is known to
have poor convergence properties [15]. Consequently,
we suggest an improved scheme based on conjugate
gradient minimization1 [3, 13] of the simple hold-out

This research was supported by the Danish Natural Science
and Technical Research Councils through the Computational
Neural Network Center (connect). CG was supported by a
DTU research grant; JL furthermore acknowledges the Radio
Parts Foundation for �nancial support.

1Unfortunately, true second order optimization techniques are
precluded since they involve 3rd order derivatives of the cost
function w.r.t. to network weights.

validation error.

2. TRAINING AND GENERALIZATION

Suppose the neural network is described by the vector
function f(x;w) where x is the input vector and w is
the vector of network weights and thresholds with di-
mensionality m. The objective is to use the neural net-
work to approximate the conditional input-output dis-
tribution p(yjx) or its moments. Normally, we model
only the conditional expectation E[yjx] which is opti-
mal in a least squares sense.

Assume that we have available a dataset,
D = f(x(k);y(k))gNk=1, of N input-output examples
split into two disjoint sets: a validation set, V , with
Nv = dNe examples2 for estimation of regularization,
and a training set, T , with Nt = N �Nv examples for
estimation of network parameters. 0 � � 1 is re-
ferred to as the split-ratio.

The neural network is trained by minimizing a cost
function which is the sum of a loss function (or train-
ing error), ST (w), and a regularization term R(w;�),
where � is the set of regularization parameters:

C(w) = ST (w) +R(w;�)

=
1

Nt

NtX
k=1

` (y(k); by(k);w) +R(w;�) (1)

where `(�) measures the cost associated with estimating
output y(k) by the network predictionby(k) = f (x(k);w). In the experimental section we
consider the mean squared error loss ` = (y � by)2.
Nt � jT j de�nes the number of training examples and
k indexes the speci�c example.

Training provides the estimated weight vector bw =
argminw C(w). The validation set consists of another
Nv � jVj examples and the validation error of the

2d�e denotes rounding upwards to the nearest integer.

trained network reads

SV(bw) =
1

Nv

NvX
k=1

` (y(k); by(k); bw) (2)

where the sum runs over the Nv validation examples.
SV(bw) is thus an unbiased estimate of the generaliza-
tion error de�ned as G(bw) = Ex;yf`(y; by; bw)g, i.e., the
expectation of the loss function w.r.t. to the (unknown)
joint input-output distribution.

Ideally we need Nv as large as possible which leaves
only few data for training, thus increasing the true gen-
eralization error G(bw). Consequently there exists an
optimal split-ratio corresponding to a trade-o� be-
tween the conicting aims, see e.g., [8], [9].

A minimal necessary requirement for a procedure
which estimates the network parameters on the train-
ing set and optimizes the amount of regularization from
a validation set is: the generalization error of the reg-
ularized network should be smaller than that of the
unregularized network trained on the full data set D.
However, this is not always the case (see e.g., [11]),
and is indeed the quintessence of the so-called \no free
lunch" theorems.

3. ADAPTING REGULARIZATION

Our aim is to adapt � so as to minimize the valida-
tion error. We can apply the iterative gradient descent
scheme originally suggested in [10]:

�(j+1) = �(j) � �
@SV
@�

(bw(�(j))) (3)

where � is a line search parameter and bw(�(j)) is the
estimated weight vector using �(j). The regularization
term R(w;�) is supposed to be linear in �:

R(w;�) = �>r(w) =

qX
i=1

�iri(w) (4)

where �i are the regularization parameters and ri(w)
the associated regularization functions. In these condi-
tions, the gradient of the validation error becomes [10],
[11]:

@SV
@�

(bw) = � @r

@w>
(bw) � J�1(bw) � @SV

@w
(bw); (5)

where J = @2C=@w@w> is the Hessian matrix of the
cost function. Suppose that the weight vector is par-
titioned into q groups w = (w1;w2; � � � ;wq) and we
use one weight decay parameter �i for each group, i.e.,
R(w;�) =

Pq

i=1 �ijwij2. In this case, the gradient
yields:

@SV
@�i

(bw) = �2(bwi)
> � si (6)

where s = [s1; s2; � � � ; sq] = J�1(bw) � @SV(bw)=@w. In
order to ensure that �i � 0 we perform a re-paramete-
rization,

�i =

�
exp(�i) ; �i < 0
�i + 1 ; �i � 0

(7)

and carry out the minimization w.r.t. the new param-
eters �. Note that @SV=@�i = @�i=@�i � @SV=@�i.

In order to improve convergence we suggest to use
the Polak-Ribiere conjugate method. Let g(j) be the
gradient at the current iteration j:

g(j) =
@SV
@�

(bw(�(j))) (8)

The search direction h(j) is updated as follow:

h(j) = �g(j) + j�1 � h(j�1) (9)

j�1 =
(g(j))> � (g(j) � g(j�1))

(g(j�1))> � g(j�1) (10)

Once the search direction h(j) has been calculated,
a line search is performed in order to �nd a set of pa-
rameters that lead to a signi�cant decrease in the cost
function. The traditional method involves a bracketing
of the minimum followed by a combination of golden
section search and parabolic interpolation to close in
on the minimum. In such a scheme, most function
evaluations are performed during the line search. We
prefer to implement an approximate line search com-
bined with the Wolfe-Powell stop condition [14, App.
B]. Prospective parameters are obtained by a combina-
tion of section search and third order polynomial inter-
polation and extrapolation. The line search stops when
the current function value is signi�cantly smaller than
what we started with, while the slope is only a fraction
of the initial slope.

It has been argued [2], [13] that the line search could
be performed e�ciently without derivatives. While
there are some arguments in favor of this claim, we
favor a line search with derivatives, for two main rea-
sons: 1) the stop condition for the approximate line
search involves the slope, hence the derivatives, and 2)
the gradient will be needed to calculate the next search
direction.

In the comparison of section 4, the steepest descent
algorithm uses the same line search.

In summary, the adaptive regularization algorithm
is:

1. Select the split ratio and initialize �, and the
weights of the network.

2. Train the network with �xed � to achieve bw(�).
Calculate the validation error SV .

3. Calculate the gradient @SV=@� using Eq. (5).

4. Calculate the search direction using Eq. (9).
5. Perform an approximate line search in the direction
h
(j) to �nd a new �.

6. Repeat steps 2{5 until either the relative change in
validation error is below a small percentage or the
gradient is close to 0.

4. EXPERIMENTS

We test the performance of the conjugate gradient al-
gorithm for adapting regularization parameters on ar-
ti�cial data generated by the system described in [4,
Sec. 4.3]:

y = 10 sin(�x1x2)+20(x3� 1

2
)2+10x4+5x5+ " (11)

where the inputs are uniformly distributed xi � U(0; 1)
and the noise is Gaussian distributed " � N (0; 1). The
data set consisted of N = 200 examples with 10 dimen-
sional input vector x. Inputs x6; � � � ; x10 are U(0; 1)
and do not convey relevant information for the output
y, cf. Eq. (11). The data set were split into Nt = 100
for training and Nv = 100 for validation. In addition,
we generated a test set of Ntest = 4000 samples.

In our simulations, we used a feed-forward neu-
ral network model with 10 inputs and 5 hidden units
with hyperbolic tangent activations. Training is done
by minimizing the quadratic loss function, augmented
with weight decay regularizers. All weights from one in-
put have an associated weight decay parameter
�1; � � � ; �10, and the hidden-to-output weights have a
weight-decay parameter �11.

Weights were initialized uniformly over the interval
[�0:5=pf; 0:5=pf], where f is the \fan-in", i.e., the
number of incoming weights to a given unit. Regular-
ization parameters are �rst initialized to 10�6. The
network is then trained for 10 iterations, after which
the �i are set to �max=10

4, where �max is the maximum
eigenvalue of the Hessian matrix of the cost function.
This prevents numerical stability problems.

Weights are estimated using the conjugate gradi-
ent algorithm and the regularization parameters are
adapted using the algorithm in Sec. 3. The inverse Hes-
sian required in Eq. (5) is found as the Moore-Penrose
pseudo inverse (see e.g., [15]) ensuring that the eigen-
value spread is less than 108, i.e., the square root of the
machine precision [3]. J is estimated using the Gauss-
Newton approximation [15].

Weights are �nally retrained on the combined set of
training and validation data using the optimized weight
decay parameters.

Table 1 reports the average and standard deviations
of the errors over 5 runs for di�erent initializations.

Neural Flexible Linear

Network Kernel Model

Train. 0:92� 0:11
Val. 1:79� 0:13

1.22 5.06

Test 3:01� 0:30
Test after

retrain.
2:26� 0:18

5.96 7.93

Table 1: Training, validation and test errors. For the
neural network the averages and standard deviations
are over 5 runs. For comparison we listed the perfor-
mance of a linear model and of a kernel smoother with
a diagonal smoothing matrix [16] optimised by mini-
mizing the leave-one-out cross-validation error.

Note that retraining on the combined data set decreases
the test error somewhat on the average.

Fig. 1 shows a typical run of the � adaptation al-
gorithm as well as a comparison with a simple steepest
descent method.

5. DISCUSSION

Our experience with adaptive regularization is glob-
ally very positive. Combined with an e�cient multi-
dimensional minimization method like the conjugate
gradient algorithm, it allows for a reliable adaptation
of the regularization parameter.

Furthermore, it is exible enough to allow a wide
class of regularization. We have here shown how this
scheme can be used to estimate the relevance of the
input. This is similar in spirit to the Automatic Rele-
vance Determination of Neal and MacKay [12].

6. CONCLUSIONS

This paper presented an improved algorithm for adap-
tation of regularization parameters. Numerical exam-
ples demonstrated the potential of the framework.

7. REFERENCES

[1] L.N. Andersen, J. Larsen, L.K. Hansen &MHintz-
Madsen: \Adaptive Regularization of Neural Clas-
si�ers," in J. Principe et al. (eds.) Proc. IEEE

Workshop on Neural Networks for Signal Process-

ing VII, Piscataway, New Jersey: IEEE, pp. 24{
33, 1997.

[2] C.M. Bishop: Neural Networks for Pattern Recog-

nition, Oxford, UK: Oxford University Press,
1995.

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

6

No. of cost and gradient func. eval.

E
rr

or

Conjugate gradient vs. Steepest descent

 Validation (CG)
 Training (CG)
 Validation (SD)
 Training (SD)

(a)

2 4 6 8 10 12
−15

−10

−5

0

5

 Iteration number

 lo
g(

κ)

 Evolution of Regularization Parameters

 Active inputs
 Noise inputs
 Output layer

(b)

Figure 1: Typical run of the � adaptation algorithm
using either steepest descent (SD) or conjugate gradi-
ent (CG). Panel (a): training and validation errors in
both cases. Note that CG both converges faster and
yield slightly lower validation error. The total num-
ber of cost and gradient evaluation is a good measure
of the total computational burden. Panel (b): evolu-
tion of the log-weight decay parameters using conjugate
gradient. Most active inputs have small weight decays,
while the noise inputs have higher weight decays. How-
ever, notice that the overall inuence is determined by
the weight decay as well as the value of the weights.
The output layer weight decay is seemingly not impor-
tant.

[3] J.E. Dennis & R.B. Schnabel: Numerical Meth-

ods for Unconstrained Optimization and Non-

linear Equations , Englewood Cli�s, New Jersey:
Prentice-Hall, 1983.

[4] J.H. Friedman: \Multivariate Adaptive Regres-
sion Splines," The Annals of Statistics , vol. 19,
no. 1, pp. 1{141, 1991.

[5] S. Geman, E. Bienenstock & R. Doursat: \Neural
Networks and the Bias/Variance Dilemma," Neu-

ral Computation, vol. 4, pp. 1{58, 1992.
[6] K. Hornik: \Approximation Capabilities of Mul-

tilayer Feedforward Networks," Neural Networks ,
vol. 4, pp. 251{257, 1991.

[7] P.J. Huber: Robust Statistics , New York, New
York: John Wiley & Sons, 1981.

[8] M. Kearns: \A Bound on the Error of Cross Val-
idation Using the Approximation and Estimation
Rates, with Consequences for the Training-Test
Split," Neural Computation, vol. 9, no. 5, pp.
1143{1161, 1997.

[9] J. Larsen & L.K. Hansen: \Empirical Generaliza-
tion Assessment of Neural Network Models," in F.
Girosi et al. (eds.), Proc. IEEE Workshop on Neu-

ral Networks for Signal Processing V , Piscataway,
New Jersey: IEEE, 1995, pp. 30{39.

[10] J. Larsen, L.K. Hansen, C. Svarer & M. Ohlsson:
\Design and Regularization of Neural Networks:
The Optimal Use of a Validation Set," in S. Usui et
al. (eds.), Proc. IEEE Workshop on Neural Net-

works for Signal Processing VI , Piscataway, New
Jersey: IEEE, 1996, pp. 62{71.

[11] J. Larsen, C. Svarer, L.N. Andersen & L.K.
Hansen: \Adaptive Regularization in Neural Net-
work Modeling," appears in G.B. Orr et al. (eds.)
\The Book of Tricks", Germany: Springer-Verlag,
1997. Available by ftp://eivind.mm.dtu.dk/

dist/1997/larsen.bot.ps.Z.
[12] R.M. Neal: Bayesian Learning for Neural Net-

works , New York: Springer Verlag, 1996.
[13] W.H. Press, S.A. Teukolsky, W.T. Vetterling, &

B.P. Flannery: Numerical Recipes in C, The Art of
Scienti�c Computing, Cambridge, Massachusetts:
Cambridge University Press, 2nd Edition, 1992.

[14] Carl E. Rasmussen: Evaluation of Gaussian Pro-

cesses and Other Methods for Non-Linear Regres-

sion, Ph.D. Thesis, Dept. of Computer Science,
Univ. of Toronto, 1996. Available by: ftp://

ftp.cs.toronto.edu/pub/carl/thesis.ps.gz.
[15] G.A.F. Seber & C.J. Wild: Nonlinear Regression,

New York, New York: John Wiley & Sons, 1989.
[16] M.P. Wand & M.C. Jones: Kernel Smoothing ,

New York, New York: Chapman & Hall, 1995.

