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ABSTRACT

The assumption of statistically independent feature vectors
within the HMM approach is a well known problem. The
aim of this study is to explore a simple and feasible method,
that takes the correlation of adjacent feature vectors into
account. A so called correlated HMM, that estimates the
emission probabilityof a state with respect to correlated fea-
ture vectors, is built by combining two separate knowledge
sources. On the one side, a traditional HMM provides an
emission probability under the condition of a certain state,
whereas on the other side a linear predictor delivers an emis-
sion probability considering the previous feature vectors.
The efficiency of this method is shown with the help of
the German SpeechDat(M) database. The application of
the correlated HMM within the verification procedure of a
keyword spotter provided an improvement of the Figure-of-
Merit from 87.1% to 88.6%.

1. INTRODUCTION

A variety of approaches have been investigated to overcome
the assumption of statistically independent feature vectors.
In [1] the correlation of features is explicitly considered and
integrated into the HMM environment. This idea was of-
ten adopted and further developments and variants are re-
ported, e. g. in [2] or [3]. Nevertheless, because of missing
effectiveness or too high expense, the problem of correlated
feature vectors still cannot be regarded as solved.

The aim of this study is to improve the keyword verifi-
cation performance by taking the correlation of subsequent
feature vectors into account. Therefore, a method is pre-
sented that enables a simple construction of a correlated
HMM by combining probability estimates of two separate
knowledge sources. This correlated HMM yields an addi-
tional score for each keywordhypothesis that is considered
within the rejection procedure.

2. COMPOSING A CORRELATED HMM

The intention of this work is to present a simple and effec-
tive method for designing a correlated HMM. In order to
overcome with the disadvantages of an integrated approach,
the correlated HMM is build up with two separately handled
knowledge sources.

The first knowledge source is a classical HMM without
any changes, that covers the acoustic properties and pro-
vides an estimate for the emission probabilityP1(Ot) under
the condition of a certain state by ignoring the correlation
of adjacent feature vectors.

P1(Ot) := P (Otjqt)

The second knowledge source regards the correlation
of the feature vectors and yields an estimate of the feature
probabilityP2(Ot) only using the previous features.

P2(Ot) := P (OtjOt�1; Ot�2; : : :)

These two probabilities are both estimates for the same
but unknown “true” probabilityP (Otjqt; Ot�1; Ot�2; : : :)
of a certain feature vector. In order to construct a corre-
lated HMM, in a certain state a suitable combination (noted
with the general operator “�”) of these separate knowledge
sources could yield a more accurate approximation

P 0(Ot) = P1(Ot) � P2(Ot)

of the real distribution. The general problem of combining
probability distributions is described in the literature, e. g.
in [4]. The advantage of this method is obvious, because
the representation of the acoustic-phonetic models have not
to be modified. Neither sophisticated models have to be
constructed in order to integrate the correlation of feature
vectors, nor practical training algorithms that deal with the
large number of parameters of such a model have to be in-
vented. The usual HMM approach simply can be combined
with a second knowledge source that considers the correla-
tion.



3. ESTIMATING THE EMISSION PROBABILITY
OF CORRELATED FEATURES

A linear predictor [5] is a suitable method to deal with cor-
related data sequences. It can be used to get an estimate for
the probability of a certain feature vectorOt regarding the
previousp feature vectorsfOt�1; : : : ; Ot�pg.

Ot = Ôt + � =

pX
i=1

AiOt�i + �

The predictor coefficientsAi are matrices,̂Ot is an esti-
mate for the real feature vector and� is a remaining predic-
tion error vector.

As a further important simplification, a linear discrimi-
nant analysis is applied after the feature extraction, so that
the single components of a feature vector are well decorre-
lated and no dependencies between the different dimensions
of the feature vector must be considered by the predictor.
As a consequence, the predictor may treat each component
separately, and the predictor coefficientsAi become diago-
nal matrices.

The random variableOt is the sum of the two random
variablesÔt and�. So the probability ofOt can be noted
as a convolution of the corresponding probability density
functionsPÔt

andP�. SinceÔt is known from the predic-
tor, its probability density function is a Dirac impulse with
PÔt

(Ot) = �(Ot � Ôt). The remaining prediction error

� = Ot � Ôt can be considered to be a normal distributed
random variable with mean�� = 0, so that it can be ex-
pressed as:

P�(�) =
1p

(2�)N j��j
e
�

1

2
�T��1

�
�

Due to the decorrelated vector components, the appro-
priate covariance matrix�� is a diagonal matrix again. It
can be determined concurrently with the parameter setAi

as the mean square discrepancies of the linear prediction
process. So the resulting emission probability of a feature
vectorOt can be expressed as follows:

P2(Ot) = P (OtjOt�1; : : : ; Ot�p)

= PÔt
(Ot) � P�(Ot)

= P�(Ot � Ôt) = P�(�)

By the utilization of a linear predictor in this way, a
emission probability of a feature vector can be calculated
that considers the time correlation of subsequent feature vec-
tors.

4. COMBINING PROBABILITY DENSITY
FUNCTIONS

According to theory, e. g. [4], there are mainly two dif-
ferent approaches to combine probability distributions. The
first can be described as a weighted sum of the particular
density functions, so that the result is a multi-modal proba-
bility density function. The second possibilitycalculates the
combined density as a weighted multiplication of the indi-
vidual density functions. After re-normalization, uni-modal
probability density functions are achieved.

Within this study, a little different approach is used. The
combined probability density function is assumed to be a
Gaussian, and its mean and variance are calculated by eval-
uating a weighted sum of the individual densities.

Some special properties of the underlyingacoustic model
have to be considered. The usual emission probability of a
state of a HMM is modeled by a multi-modal density func-
tion, where all modes have a diagonal covariance matrix and
all variances are equal, i. e.� = I � �2. Moreover, the
emission probability of the linear predictor has a diagonal
covariance matrix, where all single variances are assumed
to be equal, too, i. e.�� = I � �2� .

With these assumptions, the weighted sum of the density
functions of one mode (given byN (�;�)) and the linear
predictor (given byN (Ôt;��)) can be computed as a two-
modal density function.

(1� c) � N (�;�) + c � N (Ôt;��)

In order to obtain an uni-modal density, this weighted
sum with0 < c < 1 is approximated by a single Gaussian
by calculating the mean vector�0 and the global variance
�0 = I � �02 of this sum as

�0 = (1� c) � �+ c � Ôt

�02 = (1 � c)�2 + c�2� + (1� c)c(�� Ôt)
2

By this way, the emission probability of the correlated
HMM is given by a Gaussian with mean�0 and variance�0.
The combined probability is simply calculated by changing
the mean and the variance of all modes of all states accord-
ing to the above equations.

A further simplification is achieved by ignoring the mod-
ifications of the variances. The variance of each HMM pro-
totype vector is assumed to be constant by setting�0 = �.
By this way, only a modification of the means is performed
and the combined density function can be obtained as a
Gaussian with a shifted mean vector�0 = (1�c) ��+c �Ôt.

5. KEYWORD VERIFICATION

The goal of this work is to examine the usefulness of the
correlated HMM for keyword verification and rejection. For



this purpose the proposed methods are tested using a two
pass keyword spotting system.

At the first pass keyword hypotheses are generated us-
ing a modified Viterbi-algorithm, that is described more de-
tailed in [6]. This method is based on local confidence
scores instead of acoustic probabilities and works by op-
timizing a length-normalized confidence measure for each
keyword separately. Witht1 andt2 as keyword boundaries,
this confidence measure is defined by the following likeli-
hood ratio:

x1 =
1

t2 � t1 + 1

t2X
t=t1

� log

�
P (Otjqt)

P (Otjqt)

�

The denominator of this equation may be regarded as
the emission probability of an only assumed anti-stateqt.
Its score (in the log-domain) can be approximated very well
by averaging then best state scores according to

� logP (Otjqt) =
1

n

P
n (� logP (Otjqn)).

As a result, this hypotheses generation process delivers
keyword hypotheses, that are rated by the above confidence
measurex1. When working without additional rejection cri-
teria, this value is the sole base for deciding between key-
word acceptance and rejection by a comparison with a cer-
tain threshold.

The intention of the second verification pass is to ascer-
tain a second rejection criterion, so that a more advanced
keyword verification can be done. Similar to the above con-
fidence measure, the second rejection criterion is defined
as a length-normalized likelihood ratio, where the classical
probabilityP (Otjqt) is replaced by the probability P 0 of the
correlated HMM.

x2 =
1

t2 � t1 + 1

t2X
t=t1

� log

�
P 0(Otjqt; Ot�1; : : : ; Ot�p)

P (Otjqt)

�

As an simple and feasible approach, the correlated HMM
is produced by only shifting the means of all densities to-
wards the vector that is conceived from the linear predictor
according to the above idea. The variances of the densities
are ignored and remain unchanged.

By this way, every keyword hypothesis can be re-rated
using a linear combination of both rejection criteria as a new
score.

score = w1x1 + w2x2

6. EXPERIMENTS AND RESULTS

The German SpeechDat(M)1 database, that was recorded
via the public telephone network, is used for testing the effi-

1For information about SpeechDat see the following URL’s:
http://www.phonetik.uni-muenchen.de/SpeechDat.html
http://www.icp.grenet.fr/ELRA/home.html
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Figure 1: Normalized auto-correlation functions of selected
feature vector components

ciency of the proposed correlated HMM for keyword ver-
ification. A total number of 22136 utterances from 667
speakers were taken to train a general context dependent
HMM-set. The goal was to detect keywords within the so-
called application phrases, that are a specific part of the
database. A subset of 428 application phrases from different
167 speakers is used for testing purposes.

Feature extraction is performed at a sampling rate of 8
kHz by calculating a total number of 24 mel-filtered cep-
stral coefficients. In order to compensate different channel
transfer characteristics, a maximum likelihood based cep-
stral mean removal technique is applied to this 24 dimen-
sional vector. Adding 12 first and 12 second order deriva-
tives and including an energy component with its both deriv-
atives, a 51 dimensional vector is composed. By combining
two subsequent vectors at each time frame, a 102 dimen-
sional super-vector is obtained, which is transformed using
linear discriminant analysis. Finally, the resulting feature
vector is determined by selecting the first 24 components
out of the transformed and ordered super-vector.

In a first experiment the dependencies of adjacent fea-
ture vectors are explored by calculating their auto-correla-
tion function, that are shown in figure 1. Although feature
extraction is performed by adding first and second order
derivatives with a subsequent linear discriminant analysis
using super-vectors, it turned out that the feature vectors are
still correlated in time. The most important components, in-
dicated by high eigenvalues, show a higher degree of corre-
lation even over a longer time period than the less important
components with lower eigenvalues. On the other hand, the
single components of a particular feature vector are decor-
related well. In order to regard this correlation of adjacent
feature vectors and to design a correlated HMM, a linear
predictor withp = 4 was determined.

In a second experiment the influence of the weighting
factorc is investigated by testing distinct values ofc. The
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Figure 2: Figure-of-Merit corresponding to weighting fac-
tor c

weighting factors for re-scoring the keyword hypotheses are
chosen asw1 = w2 = 0:5, i. e. the importance of both
particular scores from the classical and the correlated HMM
are balanced.

Figure 2 shows the Figure-of-Merit and the correspond-
ing weighting factorsc. The factorc = 0 stands for no shift-
ing of Gaussian means and so the correlated HMM is identi-
cal to the classical one. This values should serve as a bench-
mark of the reference system. Best results are achieved by
choosingc = 0:2, where a FOM improvement of 1.5% is
reached.

In figure 3 the receiver-operating-characteristic (ROC)
for a weighting factorc = 0:2 is shown and compared to
the reference system. The most profits are yielded in the
range of low false alarm rates where the differences of the
detection rates have a maximum. Obviously the detection
rates must converge for high false alarm rates, because the
correlated HMM is only used for verification and rejection
and does not improve the performance of the preceding hy-
potheses generation process.
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Figure 3: Receiver-Operating-Characteristic (ROC) for a
weighting factorc = 0:2, compared with the baseline sys-
tem

7. SUMMARY AND DISCUSSION

The objective of this paper is to investigate the efficiency of
a correlated HMM for verification and rejection purposes.
Therefore, a correlated HMM is defined by combining prob-
ability density functions from separate knowledge sources.
The one is the acoustic-phonetic side, which is given by
a traditional HMM. The other knowledge source considers
the correlation of feature vectors and estimates the emission
probabilitywith respect to the previous feature vectors. This
task is done by a linear predictor. Moreover, a method for
combining these two estimates is introduced, that provides
a simple and feasible calculation of the correlated HMM by
shifting the means of all HMM prototypes.

Experiments with the German SpeechDat(M) database
yield an 1.5% increase of the Figure-of-Merit, when the cor-
related HMM is applied for getting an additional rejection
criterion, that is used for re-scoring the keyword hypothe-
ses. This improvement is achieved, although some tech-
niques are involved, that could have negative effects on cor-
related approaches, e. g. the application of delta compo-
nents, a channel compensation procedure, and a linear dis-
criminant analysis using super-vectors.

Moreover, the combination of the two probability den-
sity functions without respect to any variances is a simpli-
fication, where a more detailed approach further could en-
hance the success of the proposed methods.
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