
FAST 2D IDCT IMPLEMENTATION WITH MULTIMEDIA INSTRUCTIONS FOR A
SOFTWARE MPEG2 DECODER

Eri Murata, Masao Ikekawa and Ichiro Kuroda

C&C Media Research Laboratories, NEC Corporation
4-1-1, Miyazaki, Miyamae-ku, Kawasaki 216, Japan

e-mail: murata@ccm.cl.nec.co.jp

ABSTRACT

This paper presents an implementation of a fast two-
dimensional inverse Discrete Cosine Transform (IDCT)
with multimedia instructions for a software MPEG2 de-
coder. IDCT algorithms for sparse blocks which eliminate
the calculation for zero coefficients are realized by using
multimedia instructions. To reduce the cycle count for
IDCT, an adaptive control method for these IDCT algo-
rithms, based on the bit rate and picture type, is proposed
and its performance is described. In the implementation of
a software MPEG2 decoder, the execution time for IDCT is
reduced to 10% by using MMX instructions from original
C program. Moreover, using proposed adaptive control, it
can further be reduced to 76%.

1. INTRODUCTION

The compression of digital data, including video, audio,
and other forms of information, is going to be important for
the realization of a variety of multimedia applications on
desktop computers. Several international standards which
specify the syntax of the compressed bitstream and the
method of decoding have been developed.

The software MPEG2 decoder is coming to be a com-
mon function for multimedia PCs. However, it requires
a lot of computation power, and has usually been imple-
mented with special boards or chips. Recently software
MPEG2 decoder is realized which gives us a significant
cost effective solution[1][2]. This is made possible by mul-
timedia instructions which calculate multiple pixels in one
instruction[3][4].

The MPEG and several other compression standards
adopt the DCT/IDCT to encode and decode video data.
For the decoder, IDCT is a prime candidate for increasing
decoding speed with multimedia instructions, because of
parallelism in the computation. An 8�8 2D IDCT de-
signed by row-column decomposition can be accelerated by
operating four 1D IDCTs in parallel[5].

As many of the input coefficients of IDCT are zero due to
quantization, fast IDCT algorithms for sparse blocks which
eliminate the calculation for zero coefficients have been

proposed[6][7][8]. These IDCTs are effective in software
decoders, because they are designed based on an average
case of performance, though hardware decoders must be
designed based on the worst case.

This paper describes techniques to reduce the execu-
tion time for IDCT using MMX instructions on Pentium
processor family. First, fast IDCT algorithms for sparse
blocks which eliminate the calculation for zero coefficients
realized by using MMX instructions are described. Second,
the distribution of zero coefficients for each bit rate and
picture type is analyzed. Third, an adaptive control method
to select the IDCT algorithms for sparse blocks based on
the distribution of zero coefficients is proposed. Finally,
an implementation of this technique for a software MPEG2
decoder and its performance are described.

2. IDCT WITH MULTIMEDIA INSTRUCTIONS

2.1. Normal IDCT

An 8�8 point two-dimensional IDCT can be realized by
the 8 point one-dimensional IDCTs for eight rows and
eight columns. By using MMX instructions, four 1D
IDCTs can be performed in parallel as shown in Figure
1. Many algorithms have been proposed for the efficient
calculation for the 1D IDCT[9][10]. We adopt the LLM
algorithm[11] which requires 11 multiplications and 29
additions, considering speed and accuracy. By using MMX
instructions, the cycle count for IDCT is reduced to 10% of
the C program implementation of the same algorithm.

1
D

R
O
W

I
D
C
T

1
D

R
O
W

I
D
C
T

1
D

R
O
W

I
D
C
T

1
D

R
O
W

I
D
C
T

1
D

R
O
W

I
D
C
T

1
D

R
O
W

I
D
C
T

1
D

R
O
W

I
D
C
T

1
D

R
O
W

I
D
C
T

1
D

C
O
L

I
D
C
T

1
D

C
O
L

I
D
C
T

1
D

C
O
L

I
D
C
T

1
D

C
O
L

I
D
C
T

1
D

C
O
L

I
D
C
T

1
D

C
O
L

I
D
C
T

1
D

C
O
L

I
D
C
T

1
D

C
O
L

I
D
C
T

2
D

P
e
r
m
u
t
a
t
i
o
n

Figure 1: 8�8 2D IDCT with MMX instructions

2.2. IDCT for sparse blocks

Many of the input coefficients of IDCT in MPEG decoder
are zero due to quantization. This can be utilized to reduce
cycle counts in the IDCT by eliminating the calculation
for zero coefficients. For example, a forward mapped
IDCT(FMIDCT) which is efficient for IDCT calculation
when the input nonzero coefficient is very sparse has been
proposed[8]. On the other hand, we can eliminate the
calculation by selecting an IDCT among IDCTs for sparse
blocks for specific distributions of nonzero coefficients.
Here, we realize three types of IDCT by using MMX
instruction. Table 1 shows the relative speed of these
IDCTs implemented on a Pentium processor with MMX
instructions.

(1)IDCT DC
This is an algorithm for a block which has only one nonzero
coefficient in the DC term. The IDCT of that block can
be calculated by simply scaling and replacing this DC
component over the entire 8�8 block.
(2)IDCT AC
This is an algorithm for a block which has only one nonzero
coefficient in AC terms. We make a look-up table which
has the results of one nonzero coefficient IDCT for each
position in 8�8 block in advance. IDCTAC can be realized
by accessing the look-up table according to the address of
the nonzero component, and multiplying these results by the
nonzero component.
(3)IDCT 4�4
This is an algorithm for a block which has only 4�4 low-
frequency components. By using MMX instructions which
operate four pixels in parallel, an 8�8 2D IDCT can be
realized by four 1D IDCTs. The IDCT4�4 eliminates the
calculation for one IDCT which has no nonzero coefficient.
Furthermore, the remaining three IDCTs eliminate some
operations because half of the input coefficients are zero.

Table 1: Relative speed of IDCTs.
(without penalties for cache misses)

IDCT type normal DC AC 4�4

ratio of execution time 100 11 28 58

2.3. Distribution of nonzero coefficients

The distribution of nonzero coefficients has been analyzed
for the MPEG2 bitstreams at 4, 6, 8, and 10 Mbps. Each
frame has 8,100 8�8 blocks and each group of pictures
(GOP) includes 1 I-, 4 P-, 10 B-frames. The distribution
varies for different video streams, however, in most of the
bitstreams analyzed, there are common characteristics for
any bit rates and picture types.

Figure 2(a) shows the ratio of coded blocks per frame
and Figure 2(b) shows the number of nonzero coefficients
per coded block. It can be seen that the percentage of coded
blocks is 20 to 50% in B-frame, 65 to 80% in P-frame, 100%
in I-frame and many of the input coefficients are zero.

Figure 3 shows the probability of using each IDCT
algorithm in overall coded blocks per frame. We select
an IDCT algorithm according to the address of the end of
block (EOB) code and the number of nonzero coefficients.
The address of EOB code represents the position in a block
where the remainder of coefficient are zero. We select
an IDCT among four algorithms: (1) IDCTDC when the
EOB address is 0, (2) IDCTAC when the number of
nonzero coefficients is 1 and the EOB address is not 0,
(3) IDCT 4�4 when the EOB address is less than 10, (4)
and normal IDCT otherwise. In I-frame, many blocks use
IDCT DC and IDCT4�4, while there are few blocks which
use IDCTAC, since the nonzero coefficients are distributed
toward the low-frequency area. In B-frame, many blocks
use the IDCTs for sparse blocks especially IDCTAC, since
most of the input coefficients are zero. P-picture shows the
average characteristics between I- and B-picture. The ratio
of the blocks using IDCTs for sparse blocks becomes lower
for any picture type when the bit rate is higher.

The execution time for the IDCT per frame is estimated
by using the distributions and execution times of each IDCT
algorithm. It is reduced as shown in Figure 4. The execution
time is reduced to 67 to 85% in I-frame, 73 to 88% in P-
frame, 60 to 80% in B-frame when we use the IDCTs for
sparse blocks. However, these results don’t include the
overheads for selecting the IDCT among four IDCTs for
sparse blocks nor the penalties for cache misses.

4 6 8 10
Mbps

100

80

60

40

20

%

I pic.
P pic.
B pic.
GOPC

od
ed

 b
lo

ck
s

pe
r f

ra
m

e

Bit rate

(a)Ratio of coded blocks per frame

I pic.
P pic.
B pic.
GOP

4 6 8 10
Mbps

2

14

10

6

Th
e

nu
m

be
r o

f
no

nz
er

o
co

ef
fic

ie
nt

s

Bit rate

(b)The number of nonzero coefficients
(per coded block)

Figure 2: Distribution of nonzero coefficients.

4 Mbps

I 22.4 30.0 47.6

P 13.4 10.7 17.3 58.6

B 16.7 26.5 17.9 38.9

6 Mbps

14.7 25.8 59.5I

8.0 7.9 13.0 71.1P

10.6 23.6 14.4 51.4B

8 Mbps

10.3 22.1 67.6I

5.6 6.9 10.4 77.1P

7.7 19.0 11.4 61.9B

IDCT_DC IDCT_AC

IDCT_4x4 IDCT(normal)

10 Mbps

0% 50% 100%

7.4 19.1 73.5I

4.16.1 8.6 81.2P

6.1 14.7 9.0 70.2B

Figure 3: Probability of each IDCT algorithm.

100

4 6 8 10
Mbps

%

90

80

70

60

I pic.
P pic.
B pic.
GOPEx

ec
ut

io
n

tim
e

fo
r I

D
C

T

Bit rate

Figure 4: Performance improvement
of execution time for IDCT per frame.

(without overheads and penalties)

3. IMPLEMENTATION IN A SOFTWARE MPEG2
DECODER

3.1. Adaptive control

In this section a fast implementation technique for IDCT
in a software MPEG2 decoder is presented. To reduce
the execution time for any bit rate and picture type, it
is necessary to consider the overhead for selecting IDCT
and penalties for cache misses. The overhead increases
as the number of IDCT algorithms to prepare is increased.

When we use IDCT algorithms which is selected rarely, the
overhead of instruction cache miss increases.

Figure 5 shows the block diagram of the adaptive control
technique. First, candidate IDCT algorithms are selected in
advance based on the bit rate and the picture type. Next,
the most efficient IDCT algorithm is selected from the
preselected IDCTs according to the EOB address for each
block. By using this techniques, the overheads of selecting
IDCTs and penalties for cache misses can be reduced.
For example, in I- and P-frame, we select an algorithm
among the IDCTDC, the IDCT4�4, and the normal IDCT
when the bit rate is less than 6 Mbps (A), otherwise we
choose between the IDCT4�4 and the normal IDCT (B).
IDCT AC is not used for above cases because it requires a
lot of memory accesses, which results in the many penalties
for data cache misses. Also, it requires the overhead for
counting the number of nonzero coefficients. In B-frame,
we select from all of the algorithms for any bit rate (C).

s
w

it
c
h

s
w

it
c
h

Picture type
Bit rate

EOB address

DCT
 coefficients

s
w

it
c
h

s
w

it
c
h

result of IDCT

IDCT(normal)

IDCT_4x4

IDCT_DC

IDCT_AC

(A)

(B)

(C)

Figure 5: Adaptive control technique.

3.2. Performance Evaluation

The performance improvement of IDCT implemented in a
software MPEG2 decoder with MMX instructions is shown
in Figure 6. By using the IDCTs for sparse blocks without
adaptive control using bit rate and picture type, the execution
time including overheads or penalties is reduced to 79 to
96% (Method 1). Furthermore, when we adopt the adaptive
control for IDCTs for sparse blocks algorithms, it can be
reduced to 76 to 90% (Method 2).

Software decoders skip frames when the CPU power
isn’t sufficient to achieve real-time decoding. Using the
IDCT 4�4 instead of the normal IDCT in B-frame is some-
times effective. In this case, the execution time for IDCT
in B-frame is reduced to 60% in B-frame, and 70 to 75% in
total, although the image quality is decreased by eliminating
the calculation for high-frequency data. However, if we
display the decoding image using a low resolution monitor,

motion smoothness is more important than the image quality
in B-frame (Method 3).

Besides, we have realized the FMIDCT by MMX in-
structions, which is efficient for IDCT calculation when the
input nonzero coefficient is very sparse. The execution time
for a block increases with the number of nonzero coeffi-
cients. By our experiment, the FMIDCT is effective only
when the block has two nonzero coefficients and can’t use
the IDCT 4�4. This case is only 5% of coded blocks in I-
and P-frame, 10% in B-frame. Considering overheads and
penalties for the implementation, there is no advantage on
the software decoder by using MMX instructions.

By implementing the Method2 for IDCT, and optimiz-
ing all over the MPEG2 decoding steps including variable
length decoding (VLD)[12], inverse quantization (IQ), and
motion compensation (MC), we can realize real-time soft-
ware decoder of MPEG2-video and Dolby AC-3 audio at
4 Mbps on a 266MHz Pentium II (Pentium Pro processor
with MMX technology). The percentage of total time spent
in decoding for MPEG2-video is shown in Figure 7.

4 6 8 10
Mbps

100

90

80

70

%

method 1

method 2

method 3Ex
ec

ut
io

n
tim

e
fo

r I
D

C
T

Bit rate

Figure 6: Performance improvement
of execution time for IDCT.

Method 1: without adaptive control
Method 2: adaptive control of IDCTs for sparse blocks
Method 3: adaptive control of IDCTs for sparse blocks

without normal IDCT in B-frame

VLD+IQ IDCT MC Misc.
51% 21%

0% 50% 100%

15% 13%

Figure 7: Percentage of time spent.
(MPEG2 Video)

4. CONCLUSION

A fast software algorithms for IDCT implementation using
adaptive technique as well as MMX instructions is proposed.
The execution time for IDCT is reduced to 10% by using
MMX instructions from original C program. When an

adaptive control of these IDCTs considering the distribution
of nonzero coefficients for each bit rate and picture type is
used, it can further be reduced to 76%. By implementing
the proposed method for IDCT, and optimizing some other
steps in a software MPEG2 decoder, the bitstream of MPEG2
video and Dolby AC-3 audio at 4 Mbps can be decoded in
real-time on a 266MHz Pentium II.

5. REFERENCES

[1] C. Zhou, et al., “MPEG Video Decoding with the
UltraSPARC Visual Instruction Set,” COMPCON’95
Digest of Papers, IEEE, PP. 470-475, Mar. 1995.

[2] M. Ikekawa, et al.,“A Real-time Software MPEG-2
Decoder for Multimedia PCs,” ICCE 97, WAM1.1,
Jun 1997.

[3] B. Lee, “Accelerating Multimedia with Enhanced Mi-
croprocessor,” IEEE Micro, pp. 22-32, April 1995.

[4] O. Lempel, et al.,“Intel’s MMX Technology - A New
Instruction Set Extension,” COMPCON’97, pp. 255-
259, 1997.

[5] Intel, “Using MMX Instructions in a Fast iDCT Algo-
rithm for MPEG Decoding,” AP-528, March 1996.

[6] C. Hung, et al., “A Fast Statistical Inverse Discrete
cosine Transform for Image Compression,” SPIE/IS
& Teletronic Imaging, 2187, pp. 196-205, 1994.

[7] B. Lee, et al., “Algorithmic and Architectural Enhance-
ments for Real-time MPEG-1 Decoding on a General
Purpose RISC Workstation,” IEEE Trans. Circuits and
systems for video technology, VOL.5, No.5, Oct. 1995.

[8] L. McMillan, et al., “A forward-mapping realization
of the inverse discrete cosine transform,” Data Com-
pression Conference 1992, pp. 219-228.

[9] Y. Arai, et al., “A Fast IDCT-SQ Scheme for Images,”
Trans. IEICE, pp. 1095-1097, 1988.

[10] W. Chen, et al., “A Fast computational Algorithm for
the Discrete Cosine Transform,” IEEE Trans. COM-
25, pp. 1004-1011, 1977.

[11] C. Loeffler, et al., “Practical Fast 1-D DCT Algorithm
with Eleven Multiplications,”Proc.ICASSP 1989, pp.
988-991.

[12] D. Ishii, et al., “Parallel Variable Length Decoding
with Inverse Quantization for a Software MPEG-2
Decoder”, Proc. of the IEEE Workshop on Signal
Processing Systems, 1997.

