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ABSTRACT

This paper describes a novel method for speaker normal-
ization based on a frequency warping approach to reduce
variations due to speaker-induced factors such as the vocal
tract length. In our approach, a speaker normalized acous-
tic model is trained using time-varying (i.e., state, phoneme
or word dependent) warping factors, while in the conven-
tional approaches, the frequency warping factor is fixed for
each speaker. These time-varying frequency warping fac-
tors are determined by a 3-dimensional (i.e., input frames,
HMM states and warping factors) Viterbi decoding proce-
dure. Experimental results on Japanese spontaneous speech
recognition show that the proposed method yields a 9.7 %
improvement in speech recognition accuracy compared to
the conventional speaker-independent model.

1. INTRODUCTION

Robust and precise acoustic modeling is an indispensable
technique for achieving high recognition performance. In
most current speaker-independent speech recognition sys-
tems, acoustic models are trained using a large amount of
speech uttered by a wide variety of speakers. The spec-
tral distributions often exhibit high variance and hence high
overlap among different phonemes. Therefore, recognition
performance saturates even if a number of mixtures and
states are used or the context is increased. Consequently,
research efforts have been conducted to reduce variations
due to speaker-induced factors based on speaker normaliza-

tion [1]~[6], speaker clustering[7] or hybrid methods [8]~[10].

In recent years, many researchers have been working on
speaker normalization, since one of the major sources of
interspeaker variance is the vocal tract length. Acoustic
modeling based on speaker normalization techniques can
be roughly divided into two approaches:

1. frequency warping (FWP) [3][4][6]
2. maximum likelihood linear regression (MLLR) [5].

In the conventional FWP-based approaches, the frequency
warping factor is fixed for each speaker. That is, these
approaches do not have a framework of phoneme or HMM
state dependent frequency warping, while in the MLLR-
based approach, it is possible to define regression classes
and associate a regression matrix with each class. Also, a
phoneme or allophone dependent warping procedure would
be reasonable, when training speech samples are biased to

a certain speaker or gender for some phoneme contexts or
allophones.

In this paper, we present FWP-based acoustic modeling
in which warping factors are dynamically changed during an
utterance. These frequency warping factors are determined
by a 3-dimensional (i.e., input frames, HMM states and
warping factors) Viterbi decoding procedure. In the pro-
posed method, the recognition procedure can be performed
with a one-pass search, while in most current FWP-based
approaches; a multiple-pass search is required at the recog-
nition stage.

2. THE FRONT-END

2.1. Mel-cepstral Analysis

We represent the model spectrum H(e’“) by the M-th order
mel-cepstral coeflicients &(m) as follows:

H(z)=exp Y d(m)z" (1)
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For example, for a sampling frequency of 16kHz, & is a
good approximation to the mel scale based on subjective
pitch evaluations when o = 0.42. If we choose o = 0.46,
the mel scale is quite similar to that used in mel-frequency
cepstral coefficient (MFCC) analysis.

To obtain an unbiased estimate, we use the following
criterion and minimize it with respect to {&(m)}M_,.

P= % /_W {exp R(w) — R(w) =1} dw 4)

where )

R(w) =log In(w) —log | H(e™) | (5)
and Iy (w) is the modified periodogram of a weakly station-
ary process z(n) with a time window of length N. Since £

is convex with respect to &(m), {&(m)}2_, can be obtained
by the Newton-Raphson method[11].



Table 1: Recognition performance. (Phone accuracy %)

feature parameter  without LM with LM
LPC-cepstrum 44.0 52.2
MFCC 48.2 55.5
Mel-cepstrum 49.6 56.4
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Figure 1: Frequency warping for several o values.

2.2. Effectiveness of Mel-cepstral Analysis

To show the effectiveness of mel-cepstral analysis, we per-
formed simple recognition experiments using the TIMIT
database. 3 state and 5 mixture context-independent HMMs
(61 phone sets) were trained for LPC-cepstrum, MFCC and
mel-cepstrum. A phoneme bigram was used for the lan-
guage model (LM). Table 1 shows the differences in recog-
nition performance for these three types of feature parame-
ters. We can see from these results that mel-cepstral anal-
ysis is one of the most useful pre-processing methods for
speech recognition.

2.3. Frequency Warping

Frequency warping can be done by changing « in Eq. (2).
Figure 1 shows examples of frequency warping for several o
values.

3. NORMALIZATION PROCEDURES

3.1. 3-D Viterbi Decoding

The key point of the proposed normalization procedures
is to perform a Viterbi search on a 3-D trellis space com-
posed of input frames, HMM states and warping factors
(see Fig 2). Note that the conventional frequency warping
based normalization is done by finding a warping factor for
each speaker which yields the highest likelihood among all
possible warping factors by a 2-D (i.e., input frames and
HMM states) trellis search (see Fig 3).

3.2. Training Procedure

In the training stage, as transcriptions of speech are known,
a transition of warping factors can be obtained by aligning
the HMM states with the maximum likelihood criteria. The
following procedure is used for acoustic model training:
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Figure 2: The proposed FWP scheme.
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Figure 3: The conventional FWP scheme.

1. Set the initial warping factor to o = 0.46, for all
speakers and generate the initial HMM.

2. Align the training utterances based on 3-D Viterbi
decoding using the current HMM and find the opti-
mal warping factor for each HMM state.

3. Train an HMM using the feature vector sequence of
the optimal warping factors

4. Go to step 2 until there is no significant change bet-
ween consecutive training iterations.

In this procedure, we apply constraints to the 3-D Viterbi
decoding procedure so as not to change the warping factor
too rapidly (see 3.3).

3.3. Recognition Procedure

In the recognition stage, a transition matrix of warping fac-
tors and a phoneme (or word) sequence of speech are ob-
tained by finding an optimal path with the highest likeli-
hood. Figure 4 shows the recognition algorithm. In this
figure, S, @, D and N are the initial state sets, number of
states, number of warping factors and number of frames,
respectively. w, P, a(q’,q), f(d',d), b and x are the initial
state probability, accumulated probability, transition prob-
ability from state ¢’ to ¢, transition probability from warp-
ing factor d’ to d, output probability and feature vector,
respectively.

In this paper, the transition probability of warping fac-
tor f(d',d) is given as:
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Initialization:
for g =1 to @
ford=1to D
if (¢,d) € S then

P(q,d,0) =log7(q,d) , where Z w(g,d)=1
(g,d)eS
else
P(g,d,0) = —0
Recognition:
forn=1to N
for ¢ =1to @
ford=1to D
P(g,d,n) = max {P(q/, d'n—1)+
qu 7

loga(q’,q) +log f(d',d)} + log b(q, x(d, n))

Figure 4: Recognition algorithm.

Here, we set to w = 1 for inter-phoneme state transitions
and w = 0 forintra-phoneme state transitions (here denoted
as FWP1). These constraints can be considered reason-
able because the warping factor is not expected to change
too rapidly. Note that the proposed speaker normalization
procedure is equivalent to the conventional method (e.g.
[3][4][6]) if w = 0 for any state transition (here denoted as
FWPO0).

4. EXPERIMENTS

To investigate the relative effectiveness of the proposed
method, we conducted continuous speech recognition ex-
periments on a Japanese spontaneous speech database[12].

4.1. Conditions

230 speakers were used for training and 42 speakers for
evaluation. A 26-dimensional feature vector (12-dimensional
mel-cepstrum + power and their derivatives) computed with
a 25.6 msec window duration and a 10 msec frame period
were used for acoustic modeling. First, shared-state HMMs
(800 states in total) with 5 Gaussian mixture components
per state[13] were trained by using an initial warping fac-
tor of &« = 0.46 for all speakers (gender-independent HMM;
GI-HMM). Then, we generated two kinds of speaker nor-
malized models (i.e., FWP0 and FWP1) described in 3.
As for the FWPO training, the best warping factor was
determined for each speaker. The normalization session
described in 3.2 was repeated four times. The GI-HMM
topology was consistently used for every iteration. For fea-
ture parameter sets, 9 kinds of warping factors (D = 9)
were considered in steps of 0.04 from o = 0.30 to 0.62.
Gender-dependent HMMs (GD-HMM) were also used for
comparison. We used spontaneous speech recognizer using
cross-word context constrained word graphs[14]. The test
vocabulary consists of about 7,000 words, and the variable-
length N-gram[15] was used for the language model.
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Figure 5: Log likelihood.

4.2. Comparison of Speaker Normalized Models

The increase of the total log-likelihood during the itera-
tive acoustic model training can be seen in Fig. 5. The
solid line shows the case for FWP1 and the dotted line for
FWPO. The likelihood of iteration 0 is the likelihood of the
GI-HMM. FWPI1 yielded a consistently higher acoustic like-
lihood than FWPO for each iteration. From these results,
we can expect that the proposed speaker normalized model
based on 3-D Viterbi decoding reduces interspeaker vari-
ability more than the conventional normalization method
and results in a certain improvement in speech recognition.

The mean and standard deviation of the warping fac-
tors for each iteration are shown in Fig. 6 and Fig. 7,
respectively. These statistics are calculated from the dis-
tribution (histogram) of the warping factors obtained from
the 3-D Viterbi based alignment. We can see from these fig-
ures that the standard deviations of the proposed method
(FWP1) are greater than those of the conventional method
(FWP0). This is because the proposed method has a chance
to vary the warping factor for each phoneme during the ut-
terance, while the warping factor is fixed for each speaker
in the conventional method.

4.3. Recognition Results

The recognition results are shown in Table 2. From these
results, it can be seen that the proposed speaker normal-
ized model (FWP1) yielded a better performance than GI-
HMM, GD-HMM and the conventional speaker normalized
model (FWP0). Recognition performances of multiple iter-
ations are shown in Table 3. In this table, FWP0 and FWP1
with no iteration mean that 9 kinds of feature parameters
were used as inputs and recognition was performed using
the GI-HMM with w = 0 for FWP0 and w = 1 for FWP1.
From this table, multiple training iterations improve the
recognition performances for both FWP0 and FWP1 cases.
It is also interesting that using the 3-D Viterbi based de-
coding procedure with the unnormalized model (i.e., GI-
HMM) still gives a 6.1 % improvement over the GI-HMM
(from 74.6 % to 76.2 %).

In our experiment the recognition result with the high-
est likelihood among the several frequency warping factors,
is determined in a time-synchronous one-pass beam search.
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Figure 7: Standard deviation of warping factors.

The conventional speaker normalized model FWPO0 (73.3
%) was surprisingly slightly worse than the GI-HMM (74.6
%). This could happen because we kept a constant beam-
width, limited by memory requirements of the search en-
gine, across all experiments, which produced search errors
in the FWPO case due to large local fluctuations in likeli-
hood. Nevertheless, FWP1 achieved a 9.7 % improvement
compared to the GI-HMM (from 74.6 % to 77.1 %). Note
that in most current FWP-based approaches, a multiple-
pass search is required at the recognition stage, while in
the proposed method, the recognition procedure to find the
best hypothesis and simultaneously select the best (time-
dependent) warping factor can be performed with a one-
pass search.

5. CONCLUSION

In this paper, we have proposed a new acoustic modeling
technique based on a 3-D Viterbi decoding procedure which
aims at normalizing speaker’s variability. This method has
a framework which makes it possible to vary the frequency
warping factor with arbitrary units (i.e., state, phoneme,
word, etc.) during an utterance. The conventional fre-
quency warping based acoustic modeling can be viewed as
a special case of the proposed modeling (i.e., w = 0 in
Eq. (6)). The experimental results on spontaneous speech
recognition showed that the proposed models yielded a 9.7

Table 2: Word accuracy and relative improvement from GI-

HMM (%).
acoustic model | accuracy improvement
GI-HMM 74.6 —
GD-HMM 74.0 -2.3
FWPoO 73.3 -5.0
FWP1 77.1 9.7

Table 3: Recognition performance improvements for FWPO0
and FWP1 after four times of training iterations.

acoustic model | no. of iterations accuracy (%)
FWPO0 0 72.7
FWPO 4 73.3
FWP1 0 76.2
FWP1 4 77.1

% improvement in word accuracy compared to the standard
speaker-independent model.
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