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In this paper we present several Gauss-Newton algorithms for S cr,

blind source separation of convolutive mixtures. The algorithms

can be interpreted as generalizations of two previous approachesThis mixture is characterized by the system’s transfer matrix
due to Gerven-Compernolle [7] and Nguyen-Jutten [5]. Since

they are of the Gauss-Newton type, they exhibit a fast rate of 0 La2 .G

convergence. Also, we present a stability analysis for two A(Z):Dzaii [k]z 0.

sources and instantaneous mixtures where we show that the *la

algorithms cannot converge to non-separating solutions. .
In order to separate the sources, we introduce a MIMO LTI

[0 Lp2 0
1 INTRODUCTION system with memoryB(z):l]ZbIj [k]z‘kD to produce the
Blind Source Separation (BSS) is a fundamental problem in =T

signal processing with a large number of applications in speech ) N -
processing, array signal processing, multiuser communications, Vector of separated signagn] =[y,[n]..... yy [n" where
etc. [2]. If we assume that several statistically independent non- M Lo

Gaussian sources are transmitted through a Multiple Input v [n]= b- [k])(» [n—k]

Multiple Output (MIMO) Linear and Time Invariant (LTI) : Zk: U ! '

system, therefore arriving at an array of sensors in the form of a :
convolutive mixture, the BSS problem consists in recovering the We will also make the following assumptions throughout this
original sources from the observations only, without knowing the paper:

transmission channel and the sources. ) ) )

Most of the existing approaches to BSS have been developed foAS1- ~ The mixture issoft in the sense that each observed
instantaneous mixtures. In practical situations, however, this signal has a dominant contribution from a different source.
hypothesis is not true and it is more common to find convolutive This hypothesis is valid when each sensor is closer to one
mixtures. Different algorithms [5][7] have been proposed to source than to the others.

separate convolutive mixtures of sources in a blind way. In this AS2. Sources aralmostidentically distributed in the sense

paper we present a new approach based on the minimization of a  that cumulants of the same order do not exhibit large
statistical dependence measure by means of Gauss-Newton gitferences in magnitude.

algorithms.

This paper is organized as follows. The signal model is presentedAs pointed out by several authors [2][6], the BSS problem has
in Section 2. Section 3 develops the proposed method andmultiple valid solutions since sources can be separated with
derives two simplified versions. It also revisits existing arbitrary orders, delays and scale factors. To avoid the last two
algorithms [5][7] and interprets them as particular cases of the indeterminacies we will assumediag(B(z)) =diag(!l and
proposed one. A convergence analysis for two sources anddiag(A(z)P) = diag(l) , wherel and P are the identity and an
instantaneous mixtures will be presented in Section 4. Section 5,nknown permutation matrix, respectively.

shows the results of computer simulations and Section 6 is

devoted to the conclusions.

2. SIGNAL MODEL

Let us considerN non-Gaussian and statistically independent — » A

“hbl

h 4
oy]

sourcess[n]: [sl[n],...,s,\, [n]]T that are mixed through a MIMO
LTI system with memory. The elements of the vectoivbf N

Figure 1. Feed-forward separation model.
observed signalx[n]= [xl[n],...,xM [n]]T are given by
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3. SEPARATION ALGORITHM 2o = JedCipltull vede ) B @
The BSS problem can be solved relying only on the non-
Gaussianity and statistical independence of the sources because, T
under these hypotheses, it has been shown in [2] that the sources z= @D/w(o,m1 Zia gy Wia,B)ng Z(Ta.ﬁ)nQ E 4)
are separated if and only if the componentg'[uﬂ become pair-
wise independent. When this occurs, all the cross-cumulants _ T T[T
between different outputs vanish. This idea suggests that the b= Ve((B[_ Lbl]) ""’VedB[LbZ]) ] )

separating system be selected to minimize a weighted sum OfSubstituting (3),(4) and (5) in (1), the dependence measure can
output cross-cumulants. . . T .
be written as the inner product, =z z. Denoting the

Let us denote R (Kky e Kigy) = Jacobian matrix as) =,z, the GN iteration will consist in
Cunx, [n] xay,y, [n - kl] X0y, 5, [n L J xay) the updating the separation coefficients vector as
(il,...,iq)-order cross-cumulant of; ,y;, ... Z, - Similarly, let us b =p ™4y A (6)

define C;’l{&-z-f (K. K(g-yy) @S the tensor whose elements at the

Sag

where O0< < 2 is the adaptation step arfl is the result of

i1,---1,) position arec 2o K . . : : ;
(1 q) p aa g K1+ Kian) solving the following system of linear equations

Let us consider now the following set of cross-cumulant matrices W A=-Jz @)
of the output vector
- :{c% []: k=L Ly ; (G’B)DQ} 3.2 Simplifications based on the Jacobian

matrix structure
(Q is a set ofny pairs of natural numbers). It is apparent that o ) ] ]
th tri b di | wh fn] . t ¢ The main limitation of the above algorithm is the computational
es.e. ma r@es ecome '|agona why IS a veclor o complexity required by the evaluation of the Jacobian matrix for
statistically independent signals. Therefore, we propose as 8arbitrary pairs (a, ) i.e., the order of the cross-cumulant

crlterlon. to aphleve source s.eparatl.on the joint d"’.’lgonahzat'on Ofinvolved in the dependence measure. Initially, every pair of
M. This diagonalization is equivalent to minimizing the

following dependence measure natural numbers(a, )could belong toQ . However, the
algorithm complexity can be considerably reduced if we choose

b, = z(a,ﬂ)m Wi 5P (a.p) (1) a=1 .and B>1In this case, thg .dfependence measure is
approximately quadratic in the vicinity of the separation
2 solution.
® 0= -n [k]H @)
(@p) k| ap aB™F Under the assumptions AS1 and AS2, o= , £>1 and

stationary sources which are white sequences (or equivalently,
when there are instantaneous mixtures) it is shown in [3] that the

norm and A% [k] a temporal sequence of diagonal matrices elements of the Jacobian matrix can be approximated by

being w, 5, a set of weighting coefficient3[]_ the Frobenius

defined as A% [k]= diag(diag(C% [k])) The dependence ac’) k] 6,5, ] o

measure (1) is the weighted square distance between the set of b, [m T HirCkm 1,8 (8)

cross-cumulant matricesl1 and its diagonal counterpart

M giag :{/\yp [k]: k=-Ly.. Ly (a’B)DQ}_ where J; is the Kronecker operatordf = @ i=j, J; =0
otherwise). Taking into account these approximations, the

3.1 Minimization algorithm proposed algorithm in (6) for two white sources and two sensors
reduces to the following adaptation rule

Many different algorithms can be used to m|n|m@§ . ,_Amo_ng W(LmC)iﬁ" [O]C{g] [k]

them we choose a Gauss-Newton (GN) one since it will never ) ® @

converge to a local minimum and exhibits quadratic b i [k]:bi'j [k]—lJ XY 2 ©)

convergence. In order to derive the GN iteration, let us rearrange ;QW(LB) €3z [0])

the variables in vector notation. If we denoteqd a3} the &

correspondence that assigns non-diagonal elements of ay;ip i
N xQ matrix (with N <Q) to a vector(N -1)Qx lindexing _
first by columns and then by rows, we can define the following ©NIY requires2ng (Ly, + Ly, +1) cumulants!
vectors

=12; andk =-L,...,L,, . Recall that iteration (9)

j#i
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(I+C) i ity

=12 (12)
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In the sequel we will demonstrate that wh@nis an odd number
Figure 2. Feed-backward separation model. greater than one, the adaptation rule (12) may exhibit several

non-separating stationary points but the only stable stationary
For more sources and sensors, we observe from (8) that theyoints correspond to a separating solution.

JacobianJ is a sparse matrix and that there exists efficient

methods [4] to solve linear sparse systems such as (7). Let H=BA be the global system transfer matrix{ Hs). The

) stationary points of®, occur when the updating term in (12)
3.3 Feed-backward algorithm vanishes, i.e., when
The algorithm (6) was obtained for the feed-forward separation C:)l,j[}yl =h“h€c§+1 + hijhfczgl =05 1|, =12

system represented in Figure 1. A different version of this
algorithm can be obtained for the feed-backward separation

. . . Assuming thatf3 is chosen so that the cumulants of the sources
structure plotted in Figure 2. It has been shown in [3] that 9 B

changing the sign of the adaptation coefficient@nd replacing Cf‘3+l andCZLl are non-zero, it is straightforward to show that
the feed-forward outputy[n] by the feed-backward onesjn] the stationary points in (12) can be classified into the following
the simplified adaptation rule (9) is converted into the following groups:
one . . . .
1. His a (possibly scaled) permutation matrix.
%8098 o .
;QW(L,;)C gl Ul 10 2. His singular with at least one null row.
=™+ p (10)
w5 i =y G
oo O 3. hy =#nh andh; =nCh; with n* Bt
C,6+l
where i, . =12 andk = -L,,...,L,, . When nqy =1, this . . .
s =4 bl bz Q The first case corresponds to the separation solution. These
expression reduces to stationary points are asymptotically stableqQi u < ) #ecause
S _aa the approximation (8) for the Jacobian matrix becomes exact and
C§,S[k] i,j =12 . A . S
¢V [k]=c™[k]+ 1p ol ' (11) the algorithm coincides with a Gauss-Newton minimization
i i H?)@Q [o] k=-Ly,..., Lpy; method. This circumstance does not hold for the non-separating
1B

stationary points. Note that in the second case, one of the outputs
is zero, the denominator of the updating term in (12) vanishes
and the algorithm becomes unstable. For the third case, the
stability ODE analysis has been done leading to the following
characteristic polynomial ik

This feed-backward simplified algorithm allows us to establish a
link with existing BSS methods. Whe@ :{(ll)}, ie. B=1,

the algorithm (11) reduces to the Symmetric Adaptive
Decorrelation (SAD) algorithm proposed in [7]. On the other

hand, for B8 = 3 the algorithm (11) is very similar to the X YiYj XY
. — 2 2 2n2 T11LB-1 ~11B-1

Nguyen-Jutten (NJ method proposed in [5]. Moreover, our || = 00| =A% =2(1- w)A + (1~ u?) - u?B XY

approach presents several advantages with respect to the NJ Cip Cip'

algorithm: it exhibits greater speed of convergence since it . . .
corresponds to a Gauss-Newton method and it is asymptoticallyHowever, since3 was chosen to be odd, this expression is
stable (as shown in the following section). Finally, it is simplified to

interesting to note that, in contrast to the existing approaches

— 32 2 2n2
[5][7], the new algorithm performs adequately for non-causal " —y[ﬂ\ SAT -2 A+ Q- pT) - ptB
ixt .
mixires Now, we can use the Anderson-Jury inequalities [1] to check if
4. CONVERGENCE ANALYSIS the roots are within the stability region. These @é< antl
O<u< . Then, since by hypothesi@ > , e have

The dependence measutg, to be minimized in our method is 1+

not a quadratic form of the separating system coefficients andreached a contradiction and the algorithm will also be unstable in
thus may contain undesired minima that will impair the the third case.

convergence of the adaptive algorithms. In the sequel we present

a convergence analysis to show that, even though these minima 5. COMPUTER SIMULATIONS

may exist (depending on the chosen €e}, they are not stable

points. Since a general proof is rather involved, we will consider In this section we present the results of several computer
the simpler case of two sources, two sensors and instantaneousxperiments carried out to illustrate the performance of the
mixtures. In this case, the feed-forward algorithm (9) reduces to proposed algorithms.



value appears in the non-diagonal elementabse we are using
estimates of the cumulants instead of the true values.

Figure 3 illustrates the algorithm rate of convergence by
presenting the dependence measdrg versus iterations. The

dotted line represents the case of using true cross-cumulant
values (which corresponds to a quadratic convergence) whereas
the solid line represents the case of using cumulant estimates
s (which corresponds to a linear convergence). Finally, the dotted-

| ] pointed line represents the case of applying the feed-backward
algorithm (11) using cumulant estimates. Observe that source
separation was achieved in all cases.

6. CONCLUSIONS

DEPENDENCE MEASURE

20} --X-- FF method & Exact cumulants
-0- FF method & Cumulant estimates
.-*.- FB method & Cumulant estimates

0 1 2 3 4 5
ITERATIONS

A new blind source separation algorithm for convolutive soft
mixtures has been presented. It is based on a Gauss-Newton
algorithm that minimizes a dependence measure that involves
cross-cumulants of the outputs. Exploiting the Jacobian matrix
structure, we found simplified versions of the algorithm with
lesser computational complexity. We also showed that existing
methods [5][7] can be interpreted as particular cases of our
approach. The proposed algorithms exhibit a fast convergence
(typically three iterations) because they are of the Gauss-Newton

It is apparent that the mixing matrix satisfies the soft mixture Wpe-__A convergence analysis was also carried out in Fh.e
condition. We applied the GN feed-forward algorithm (9) with simplified case of instantaneous mixtures of two sources and it is
o ={(l3)} Cumulants were estimated from 5000 samples of the shown that the unique stable stationary point of the feed-forward

X . . . . algorithm corresponds to the separation solution.
observations. After 2 iterations we arrived at the separating
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. N 1 0.627
= Initial Energy Matrix: Hg =
.5547 1
. R 1 0.000
»  Final Energy Matrix: Hg =
.0005 1

It is clearly seen that an exact separation is almost reached since
the final energy matrix is close to the identity matrix. A residual
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