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ABSTRACT
In this paper we present several Gauss-Newton algorithms for
blind source separation of convolutive mixtures. The algorithms
can be interpreted as generalizations of two previous approaches
due to Gerven-Compernolle [7] and Nguyen-Jutten [5]. Since
they are of the Gauss-Newton type, they exhibit a fast rate of
convergence. Also, we present a stability analysis for two
sources and instantaneous mixtures where we show that the
algorithms cannot converge to non-separating solutions.

1. INTRODUCTION
Blind Source Separation (BSS) is a fundamental problem in
signal processing with a large number of applications in speech
processing, array signal processing, multiuser communications,
etc. [2]. If we assume that several statistically independent non-
Gaussian sources are transmitted through a Multiple Input
Multiple Output (MIMO) Linear and Time Invariant (LTI)
system, therefore arriving at an array of sensors in the form of a
convolutive mixture, the BSS problem consists in recovering the
original sources from the observations only, without knowing the
transmission channel and the sources.
Most of the existing approaches to BSS have been developed for
instantaneous mixtures. In practical situations, however, this
hypothesis is not true and it is more common to find convolutive
mixtures. Different algorithms [5][7] have been proposed to
separate convolutive mixtures of sources in a blind way. In this
paper we present a new approach based on the minimization of a
statistical dependence measure by means of Gauss-Newton
algorithms.
This paper is organized as follows. The signal model is presented
in Section 2. Section 3 develops the proposed method and
derives two simplified versions. It also revisits existing
algorithms [5][7] and interprets them as particular cases of the
proposed one. A convergence analysis for two sources and
instantaneous mixtures will be presented in Section 4. Section 5
shows the results of computer simulations and Section 6 is
devoted to the conclusions.

2. SIGNAL MODEL
Let us consider N  non-Gaussian and statistically independent

sources [ ] [ ] [ ][ ]TN nsnsn ,,1 �=s  that are mixed through a MIMO

LTI system with memory. The elements of the vector of NM ≥

observed signals [ ] [ ] [ ][ ]TM nxnxn ,,1 �=x  are given by
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This mixture is characterized by the system’s transfer matrix
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In order to separate the sources, we introduce a MIMO LTI

system with memory [ ]
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vector of separated signals [ ] [ ] [ ][ ]TN nynyn ,,1 �=y  where
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We will also make the following assumptions throughout this
paper:

AS1. The mixture is soft in the sense that each observed
signal has a dominant contribution from a different source.
This hypothesis is valid when each sensor is closer to one
source than to the others.

AS2. Sources are almost identically distributed in the sense
that cumulants of the same order do not exhibit large
differences in magnitude.

As pointed out by several authors [2][6], the BSS problem has
multiple valid solutions since sources can be separated with
arbitrary orders, delays and scale factors. To avoid the last two
indeterminacies we will assume )())(( IB diagzdiag =  and

)())(( IPA diagzdiag = , where I  and P  are the identity and an
unknown permutation matrix, respectively.

Figure 1. Feed-forward separation model.



3. SEPARATION ALGORITHM
The BSS problem can be solved relying only on the non-
Gaussianity and statistical independence of the sources because,
under these hypotheses, it has been shown in [2] that the sources
are separated if and only if the components of [ ]ny  become pair-
wise independent. When this occurs, all the cross-cumulants
between different outputs vanish. This idea suggests that the
separating system be selected to minimize a weighted sum of
output cross-cumulants.
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Let us consider now the following set of cross-cumulant matrices
of the output vector
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( Ω  is a set of Ωn  pairs of natural numbers). It is apparent that

these matrices become diagonal when [ ]ny  is a vector of
statistically independent signals. Therefore, we propose as a
criterion to achieve source separation the joint diagonalization of
Π . This diagonalization is equivalent to minimizing the
following dependence measure
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being ),( βαw  a set of weighting coefficients, 
F

  ⋅  the Frobenius

norm and [ ]kyy,
βα ,Λ  a temporal sequence of diagonal matrices

defined as [ ] [ ]( )( )kdiagdiagk yy,yy, C βαβα ,, =Λ . The dependence

measure (1) is the weighted square distance between the set of
cross-cumulant matrices Π  and its diagonal counterpart
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3.1 Minimization algorithm

Many different algorithms can be used to minimize ΩΦ . Among

them we choose a Gauss-Newton (GN) one since it will never
converge to a local minimum and exhibits quadratic
convergence. In order to derive the GN iteration, let us rearrange
the variables in vector notation. If we denote )(⋅vec  as the
correspondence that assigns non-diagonal elements of a

QN × matrix (with QN ≤ ) to a vector 1)1( ×− QN  indexing
first by columns and then by rows, we can define the following
vectors
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Substituting (3),(4) and (5) in (1), the dependence measure can

be written as the inner product ZzT=ΦΩ . Denoting the

Jacobian matrix as zJ b∇= , the GN iteration will consist in

updating the separation coefficients vector as

∆+=+  )()1( µnn bb (6)

where 20 << µ  is the adaptation step and ∆  is the result of
solving the following system of linear equations

zJJJ   −=∆T              (7)

3.2 Simplifications based on the Jacobian
matrix structure

The main limitation of the above algorithm is the computational
complexity required by the evaluation of the Jacobian matrix for
arbitrary pairs ),( βα , i.e., the order of the cross-cumulant
involved in the dependence measure. Initially, every pair of
natural numbers ),( βα  could belong to Ω . However, the
algorithm complexity can be considerably reduced if we choose

1=α  and 1>β . In this case, the dependence measure is
approximately quadratic in the vicinity of the separation
solution.

Under the assumptions AS1 and AS2, for 1=α , 1>β  and
stationary sources which are white sequences (or equivalently,
when there are instantaneous mixtures) it is shown in [3] that the
elements of the Jacobian matrix can be approximated by
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where ijδ  is the Kronecker operator ( 1=ijδ  if ji = , 0=ijδ
otherwise). Taking into account these approximations, the
proposed algorithm in (6) for two white sources and two sensors
reduces to the following adaptation rule
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≠
. Recall that iteration (9)

only requires )1(2 21 ++Ω bb LLn  cumulants!



Figure 2. Feed-backward separation model.

For more sources and sensors, we observe from (8) that the
Jacobian J  is a sparse matrix and that there exists efficient
methods [4] to solve linear sparse systems such as (7).

3.3 Feed-backward algorithm

The algorithm (6) was obtained for the feed-forward separation
system represented in Figure 1. A different version of this
algorithm can be obtained for the feed-backward separation
structure plotted in Figure 2. It has been shown in [3] that
changing the sign of the adaptation coefficients b  and replacing
the feed-forward outputs [ ]ny  by the feed-backward ones [ ]ns�

the simplified adaptation rule (9) is converted into the following
one
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where 21 ,,  and  ;2,1, bbij
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≠
. When 1=Ωn , this

expression reduces to
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This feed-backward simplified algorithm allows us to establish a
link with existing BSS methods. When { })1,1(=Ω , i.e. 1=β ,
the algorithm (11) reduces to the Symmetric Adaptive
Decorrelation (SAD) algorithm proposed in [7]. On the other
hand, for 3=β  the algorithm (11) is very similar to the

Nguyen-Jutten (NJ) method proposed in [5]. Moreover, our
approach presents several advantages with respect to the NJ
algorithm: it exhibits greater speed of convergence since it
corresponds to a Gauss-Newton method and it is asymptotically
stable (as shown in the following section). Finally, it is
interesting to note that, in contrast to the existing approaches
[5][7], the new algorithm performs adequately for non-causal
mixtures.

4. CONVERGENCE ANALYSIS

The dependence measure ΩΦ  to be minimized in our method is

not a quadratic form of the separating system coefficients and
thus may contain undesired minima that will impair the
convergence of the adaptive algorithms. In the sequel we present
a convergence analysis to show that, even though these minima
may exist (depending on the chosen set Ω ), they are not stable
points. Since a general proof is rather involved, we will consider
the simpler case of two sources, two sensors and instantaneous
mixtures. In this case, the feed-forward algorithm (9) reduces to
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In the sequel we will demonstrate that when β  is an odd number
greater than one, the adaptation rule (12) may exhibit several
non-separating stationary points but the only stable stationary
points correspond to a separating solution.

Let BAH =  be the global system transfer matrix ( sHy  = ). The

stationary points of ΩΦ  occur when the updating term in (12)

vanishes, i.e., when
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ji ss CC 11  and ++ ββ  are non-zero, it is straightforward to show that

the stationary points in (12) can be classified into the following
groups:

1. H is a (possibly scaled) permutation matrix.

2. H is singular with at least one null row.
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The first case corresponds to the separation solution. These
stationary points are asymptotically stable (if 20 << µ ) because
the approximation (8) for the Jacobian matrix becomes exact and
the algorithm coincides with a Gauss-Newton minimization
method. This circumstance does not hold for the non-separating
stationary points. Note that in the second case, one of the outputs
is zero, the denominator of the updating term in (12) vanishes
and the algorithm becomes unstable. For the third case, the
stability ODE analysis has been done leading to the following
characteristic polynomial in λ
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However, since β  was chosen to be odd, this expression is
simplified to
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Now, we can use the Anderson-Jury inequalities [1] to check if

the roots are within the stability region. These are 12 <β  and

β
µ

+
<<

1

2
0 . Then, since by hypothesis 1>β , we have

reached a contradiction and the algorithm will also be unstable in
the third case. 

5. COMPUTER SIMULATIONS

In this section we present the results of several computer
experiments carried out to illustrate the performance of the
proposed algorithms.



Figure 3. Dependence Measure ΩΦ  versus Iterations.
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We have considered two independent uniformly distributed
white sources which are mixed through the convolutive channel
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It is apparent that the mixing matrix satisfies the soft mixture
condition. We applied the GN feed-forward algorithm (9) with

( ){ }3,1=Ω . Cumulants were estimated from 5000 samples of the
observations. After 2 iterations we arrived at the separating
matrix
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To measure the performance of the proposed method we use
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matrix H . This matrix is normalized as follows in order that the
diagonal elements are equal to one
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Perfect separation of the sources is achieved when EH  is the

identity matrix. In our computer experiment the initial and final
normalized energy matrices of the overall transfer function were

� Initial Energy Matrix:   
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It is clearly seen that an exact separation is almost reached since
the final energy matrix is close to the identity matrix. A residual

value appears in the non-diagonal elements because we are using
estimates of the cumulants instead of the true values.

Figure 3 illustrates the algorithm rate of convergence by
presenting the dependence measure ΩΦ  versus iterations. The

dotted line represents the case of using true cross-cumulant
values (which corresponds to a quadratic convergence) whereas
the solid line represents the case of using cumulant estimates
(which corresponds to a linear convergence). Finally, the dotted-
pointed line represents the case of applying the feed-backward
algorithm (11) using cumulant estimates. Observe that source
separation was achieved in all cases.

6. CONCLUSIONS

A new blind source separation algorithm for convolutive soft
mixtures has been presented. It is based on a Gauss-Newton
algorithm that minimizes a dependence measure that involves
cross-cumulants of the outputs. Exploiting the Jacobian matrix
structure, we found simplified versions of the algorithm with
lesser computational complexity.  We also showed that existing
methods [5][7] can be interpreted as particular cases of our
approach. The proposed algorithms exhibit a fast convergence
(typically three iterations) because they are of the Gauss-Newton
type. A convergence analysis was also carried out in the
simplified case of instantaneous mixtures of two sources and it is
shown that the unique stable stationary point of the feed-forward
algorithm corresponds to the separation solution.
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