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Abstract
Dynamic Positron Emission Tomography (PET) has opened
the possibility of quantifying physiological processes within
the human body. On performing dynamic PET studies, the
tracer concentration in blood plasma has to be measured, and
acts as the input function for tracer kinetic modelling. In this
paper, we propose an approach to estimate physiological
parameters for dynamic PET studies without the need of taking
blood samples. The proposed approach comprises two major
steps. First, a wavelet denoising technique is used to filter the
noise appeared in the projections. The denoised projections are
then used to reconstruct the dynamic images using filtered
backprojection. Second, an eigen-vector based blind
deconvolution technique is applied to the reconstructed
dynamic images to estimate the physiological parameters. To
demonstrate the performance of the proposed approach, we
carried out a Monte Carlo simulation using the fluoro-deoxy-2-
glucose model, as applied to tomographic studies of human
brain. The results demonstrate that the proposed approach can
estimate the physiological parameters with an accuracy
comparable to that of invasive approach which requires the
tracer concentration in plasma to be measured.

1. Introduction
Dynamic Positron Emission Tomography (PET) has been
playing an important role in quantification of physiological
processes within the human body[1]. On performing dynamic
PET studies, radioactive tracer is injected into the patient.
Projections are recorded by a PET scanner and a sequence of
dynamic images are then reconstructed. Tissue time activity
curves (TTACs) are extracted from the regions of interest
(ROIs), and finally, physiological parameters are estimated by
fitting the TTACs to a pre-assumed tracer kinetic model using
optimization techniques. The studies also require the
measurements of tracer concentration in blood plasma, i.e. the
plasma time activity curve (PTAC), which acts as the input
function for the kinetic model.

PTAC are usually obtained by direct arterial blood sampling.
This process is invasive, time-consuming and requires extra-
staff. It introduces additional radiation exposure to clinical
personnel and increases the possibility of spreading infestous
diseases. Therefore, it is desirable to have methods which
enable quantification of physiological processes with reduced
number of blood samples so that the inconvenience caused can
be minimized.

Recently, Carson et al[2] and Watabe et al[3] have proposed
techniques that completely eliminate the process of blood
sampling. Both methods are developed for estimating the
regional cerebral blood flow (rCBF) using PET. However, their
extensions to more complex models, e.g. fluoro-2-deoxy-
glucose (FDG) model, still need further investigation. In fact,
the solutions are likely to be computationally demanding.

In this paper, we propose an approach to estimate the
physiological parameters for a pre-assumed tracer kinetic
model when performing dynamic PET studies, without taking

arterial blood samples. The approach consists of two major
steps. First, the wavelet transform is used for the denoising of
the projections[4]. Second, an eigen-vector based blind
deconvolution[5] algorithm is applied to estimate the
physiological parameters. This technique is applied to estimate
the regional cerebral metabolic rate of glucose (rCMRGlc)
based on FDG model[1]. The performance of the proposed
approach is demonstrated using the Monte Carlo simulation.
The result illustrates that the proposed approach can provide a
comparable performance as that of invasive approach which
requires the input curve to be measured.

2. Traditional Parameter Estimation Approach
The traditional parameter estimation approach for dynamic
PET studies can be illustrated by using the FDG model[1]. The
FDG model is a mathematical model employed to determine
the transport rate constants of radioactive FDG after it has been
injected intravenously into the human body. The FDG model,
as shown in figure 1, consists of three compartments, (1) the
blood pool region which represents the concentration of FDG
in plasma, i.e. PTAC, (2) the concentration of free FDG in
tissue, Ce(t), and (3) the concentration of FDG-6-phosphate in
tissue, Cm(t). The various concentrations in tissue can be
solved (see [1]) in terms of PTAC:
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where Ci(t) is the total 18F activity in tissue, i.e. TTAC, the
symbol ⊗ denotes the operation of convolution integral, and
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Since Ci(t), or equivalently TTAC, can be measured with PET
scanner, and PTAC can be obtained by taking blood samples,
the values of the rate constants, k1-k4, of FDG model can be
estimated by performing a non-linear least square optimization.

The estimated k1-k4 are then used to calculate the metabolic
rate of glucose in a local region, Ri, given as
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where LC denotes the lumped constant, accounting for the
differences between FDG and glucose in transportation and
phosphorylation, and Cp denotes the cold glucose
concentration in plasma. Both LC and Cp are assumed constant
and can be determined in advance. We are interested to the
parameter Ri because it represents the activity of a particular
part of human body. This gives a useful information to medical
practitioner in various diagnostic applications.

One of the disadvantages with this approach is that it requires
repeated measurements of PTAC at different instants up to a



sufficient long time interval (usually more than 60 minutes).
The blood collection and processing is invasive, time
consuming and requires extra clinical staff. It also introduces
additional radiation exposure and increases the possibility of
spreading infestous diseases to the clinical personnel. We thus
investigated an alternative method which can estimate the
kinetic rate constants, k1-k4, and hence Ri, for the FDG model
without measuring PTAC.

3. Dynamic PET studies using Blind Deconvolution
3.1 Denoising
The fundamental of the proposed approach is the use of a blind
deconvolution technique which is based on eigen-vector
decomposition[5]. Since the computation of eigen-vector is
sensitive to noise, we employed a denoising step before the
blind deconvolution. Among the numerous denoising
methodologies in the literature, linear low pass filtering[6] is
the most commonly used approach since it is easy to
implement with the standard convolution backprojection
method. However, the linear low pass filtering approach
unavoidably blurs the edges and causes the loss of structural
information of the original image. Another way of denoising is
to model the emission process as a random process and to use
reconstruction algorithms based on the statistical model[7].
However, this technique are usually computationally expensive
and is not suitable for daily operation. Therefore, in this paper,
we choose to use a denoising approach which is based on the
wavelet transform[4]. Wavelet denoising has the advantage of
preserving the structural information of the image when
filtering the noise. In addition, when comparing with other
wavelet denoising approaches[8], the chosen approach also has
the advantages of non-iterative reconstruction and simple
computation which make it favorable for daily clinical usage.
Details of the wavelet denoising can be found in [4]. After
wavelet denoising is applied to filtering the noise, the blind
deconvolution is used to estimate the kinetic parameters based
on the dynamic images reconstructed from the denoised
projections.

3.2 Blind Deconvolution
The study of blind deconvolution attracts much importance
recently in the areas of communication, signal processing, as
well as geophysics. Its major objective is to estimate the input
or the system transfer function only from their convolution
output. This seemingly impossible problem has been shown to
have closed form solution. The current blind deconvolution
approaches can be divided into two classes. The ones that rely
on high order statistic[9] often require the input function to
fulfill a certain kind of statistical characteristics, e.g. identical
and independent distribution (i.i.d.), that may be difficult to
achieve in some applications. The ones that rely on second
order statistic seems to have less requirement on the input data,
transfer function, as well as the noise of the output[5]. In this
paper, multi-channel blind deconvolution technique in this
class is adopted.

A block diagram for the problem of multi-channel blind
deconvolution is shown in figure 2. It is assumed that the
number of unknown channels is greater than one. For
simplicity, the two-channel case will be considered here. As
applied to our problem, the output signals of the unknown
system is the tracer concentration in tissue, i.e. TTACs. These
curves are the results of the convolution integral of PTAC(t)
with the impulse response of the FDG models, FDGi(t). They
are given as follows:

TTAC t FDG t PTAC ti i( ) ( ) ( )= ⊗     i =1,2 (7)

Provided an appropriate sampling rate, the convolution integral
as shown in (7) can be approximated by a discrete linear
convolution. The advantages of using a discrete linear
convolution rather than a convolution integral are, first, we can
speed up the computation, and more importantly, we can apply
various well-established digital signal processing techniques to
improve the performance in estimating the physiological
parameters. Nevertheless, it is never possible to attain such a
sampling rate in real practice. For TTAC, usually only 22
samples taken in an irregular time interval are obtained.
Fortunately, due to the smoothness of the input and output
functions, the discrete linear convolution can still be used by
re-sampling the irregularly sampled data to the required
sampling rate using an interpolation. Figure 3 shows the
difference between the TTACs obtained by mathematically
performing the convolution integral to the PTAC and FDG
model and that obtained by using discrete linear convolution.
The difference of them in average is less than -54 dB. This
result shows that we can safely approximate the convolution
integral in (7) by discrete linear convolution.

Both unknown channels in figure 2 are fed by the same
unknown input function, i.e., the PTAC. The two unknown
channels of the system are the FDG models with different
kinetics of, for example, brain grey matter (Region 1) and
white matter (Region 2), respectively. The impulse response of
the FDG model is given as follows:
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Eqn. 8 can be discretized  and expressed in Z domain using the
following rational system transfer function,
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where Ni(z-1) and Di(z-1) are the polynomials in z-1 of order Ni
and Di, respectively. They are related to the kinetic parameters
of the FDG model as follow:
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The roots of Ni(z-1) and Di(z-1) may be inside and/or outside
the unit circle. It is also assumed that the channel transfer
functions have no common poles and zeros.

The re-sampled TTACs are sent to a two-channel adaptive
system shown in figure 4. The channel transfer functions are
finite order polynomials Wi(z-1) with order Wi. That is, the
adaptive channels are FIR, with
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The polynomial coefficients wi,k are assumed to be adaptable
via some algorithms. We can also express the polynomial
coefficients in vector form as follow:
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Denotes Xi(t) as the re-sampled TTACs, such that,
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We define the error signal, e(t), as:
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where τ is the length of the time interval. Assuming that the
observation signals are noise free, there is a simple relationship
between the roots of the unknown FDG channels and the root
of the adaptive channels. Assuming that the adaptive channel
orders are chosen such that,

W1 = N2 + D1 and W2 = N1 + D2 (18)
then, the unique family of solutions for W1(z

-1)  and W2(z
-1)

that minimize ε(W) is given by
W1=αN2(z

-1)D1(z
-1) and W2(z

-1)= -αN1(z
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where α is an arbitrary constant. With the above family of
solutions, we have ε(W) = 0. Thus if some W can be found for
which ε(W) = 0, then the set of Ni and Di will be the solutions
and can be obtained by factorizing W1(z

-1)  and W2(z
-1).

Finally, the rate constants, k1-k4, of the FDG model can be
obtained by equation (9), (11) and (12).

To calculate the family of Wi that satisfies ε(W)=0, we make
use of an eigen-vector decomposition approach similar to that
in [5]. More specifically, we calculated W1(z

-1)  and W2(z
-1) as

follows:

1. Based on the signal observed through the multi-channel,
i.e. TTACs, produced a data matrix, Ax, as follow:
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2. From Ax, we compute the sample correlation matrix
defined as Rx = Ax

TAx.
3. Then compute the eigen-vector, q, corresponding to the

smallest eigenvalues of Rx.
4. Partition q into sub-vectors q1 and q2 and obtain the

channel transfer function Q1 and Q2.
5. The set of transfer function thus obtained by Q1 and Q2

provides a basis for the solutions for Westi,1 and Westi,2.

Lastly, we estimate the parameters by minimizing the following
cost function using nonlinear least square curve fitting:
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where Wpredicted,i is  the model predicted transfer function for
adaptive channels given as (19) and Westi,i is the transfer
function calculated from the observable TTACs.

In summary, the proposed  approach can be stated as follow:
first, the wavelet denoising is applied to filter the noise in the
projections. This denoised projections are then reconstructed
using the filter back projection algorithm. From the
reconstructed dynamic images, two TTACs are then extracted
from ROIs, e.g. one from the grey matter and the other from
the white matter. The two TTACs are then re-sampled to the
required rate using interpolation. Based on these two curves,
the blind deconvolution technique is applied to estimate the
parameters of interest, k1-k4.

4. Simulation Method and Results
To validate the present method, we carried out a Monte Carlo
simulation study. In our simulation, we generated the
PTAC[10] numerically as the input function. We assume that
the time delay of the input function model is equal to zero. The
mathematical expression of this simplified input function
model, PTAC(t), is given as follows:

PTAC(t) = ( B1t - B2 - B3 ) exp(µ1t) + B2 exp(µ2 t) + B3 exp(µ3 t)
where, as previously published [10]:

B1 = 851.1, B2 = 21.88, B3 = 20.81 [µCi/ml]

µ1 = -4.134, µ2 = -0.1191, µ3 = -0.0104 [1/min]

The transport rate constants, k
1
-k

4
, for the FDG models are

obtained from [1] and are listed in Table 1. The derived
parameter, K, which is proportional to the metabolic rate of

glucose and is equals to k1*k3/(k2+k3), is also shown in Table
1. It is used as a reference for the comparison of the
performance of different methods. Based on the simulated
PTAC and the FDG model, TTACs (6×0.167s, 4×0.5s,
1×2min, 11×5min) were generated according to (3). These
curves are reformatted into dynamic images using the Hoffman
brain phantom. The phantom is partitioned into two regions
corresponding to the two different kinetics which are typical of
brain white matter and grey matter, respectively. Sinogram data
are generated with 64 projections, each with 64 bins, assuming
360o rotation. The simulation did not include attenuation,
scatter or distance dependent detector response. The projection
data were scaled to count densities which might be expected
for dynamic PET imaging (with 2k counts/sec in the last frame-
interval). Poisson noise were added to the projection data.

Four methods for analysis were compared:
(1)  Traditional parameter estimation method as stated in

section 2.
(2)  Proposed blind deconvolution method without denoising.
(3)  Traditional parameter estimation method with denoising.
(4)  Proposed blind deconvolution method with denoising.

For each method, k1-k4 are estimated and the parameter, K, is
evaluated. The simulations were carried out for one hundred
independent realizations to obtain average performance for
each method. The percentage errors compared to the true
parameters (bias) and the coefficient of variation (CV) of the
estimated k1-k4 and K’s were determined.

Table 2 shows the bias and CV of the estimated k1-k4 and K  of
different regions using the four different methods as indicated
above. As can be seen, when blind deconvolution is applied
without wavelet denoising, there is significant bias for the
result. This is because the calculation of the eigen-vector is
sensitive to noise. When noise exists, the eigen-vector
calculated based on the sample correlation matrix is biased. As
a result, the parameters estimated will deteriorate. However,
when wavelet denoising is applied to filter the noise in the
projections, followed by the blind deconvolution, the result
significantly improved. Furthermore, the bias of estimated k1 is
better than the other methods. This is because of the larger
value for k1 as well as the fact that two regions are analyzed
simultaneously in the proposed blind deconvolution method.
The bias of the estimated k2, k3 and K are comparable to that of
invasive method. Although k4 is still much larger because of its
small value, the existence of k4 does not very much contribute
to the calculation of K. Hence the error incurred is not
significant to the final result as a whole. For the CV,  the
proposed method with denoising is always lower than the other
methods.

5. Conclusion
In this paper, we proposed an approach for estimating
physiological parameters from dynamic PET studies, without
the requirement of taking any blood samples. The proposed
approach comprises two major steps: wavelet denoising is used
to filter the noise in projections, and blind deconvolution is
used for parameter estimation. We have performed a Monte
Carlo simulation to investigate the performance of the
proposed approach. The results demonstrate that the approach
can estimate the physiological parameters with an accuracy
comparable to that of invasive approach which requires the
whole PTAC to be measured. Since the proposed approach
obviates the taking of blood samples, it is non-invasive, simple
and it minimizes the possibilities of radiation exposure to
clinical personnel and the possibility of spread of infestous



diseases. Therefore, the proposed technique has widespread
clinical appeal.

Acknowledgement
This work is supported by PolyU research grant 354/094.

References
[1] Huang, et al, “Noninvasive determination of local cerebral

metabolic rate of glucose in man.” Am. J. Physiol., vol.
238, E69-E82, 1980.

[2] Carson, et al, “Absolute Cerebral Blood Flow with
[15O]Water and PET - Determination Without a Measured
Input Function.” Quantification of Brain Function using
PET, Academic Press, pp. 185-190.

[3] Watabe, et al, “Nonivasive Quantification of rCBF Using
Positron Emission Tomography.” Quantification of Brain
Function using PET, Academic Press, pp. 191-195.

[4] Hsung, et al, “Denoising by Singularity Rejection.”
Proceeding of 1997 International Symposium on Circuits
and Systems, vol. 1, pp. 205-208, 1997.

[5] Gurelli, et al, “EVAM: An Eigenvector-based Algorithm
for Multichannel Blind Deconvolution of Input Colored
Signals.” IEEE Trans. Signal Processing, vol. 43, pp.134-
149, 1995.

[6] Kuan, et al, “Adaptive noise smoothing filter for images
with signal-dependent noise.” IEEE Trans. Patt. Anal.
Machine Intell., vol. 7, pp. 165-177, 1985.

[7] Shepp, et al, “Maximum likelihood reconstruction in
positron emission tomography.” IEEE Trans. Med.
Imaging, vol. 1, pp. 113-122, 1982.

[8] Mallat, et al, “Singularity detection and processing with
wavelets.” IEEE Trans. Info. Theory, vol. 38, pp. 617-
643, 1992.

[9] Zhang, et al, “FIR system identification using High Order
Statistics alone.” IEEE Trans. on Signal Processing, vol.
42, pp. 2854-2858, 1994.

[10] Feng, et al, “Model for computer simulation studies of
input functions for tracer kinetic modeling with positron
emission tomography.” Int. J. Biomed. Comput., vol. 32,
pp. 95-110, 1993.

k1 k2 k3 k4 K
Region 1 0.1200 0.1070 0.0440 0.0059 0.0350
Region 2 0.0740 0.1030 0.0290 0.0038 0.0163

Table 1: The transport rate constants, k
1
-k

4
, and K for the FDG

models.

Region 1 Region 2
Bias (%) k1 k2 k3 k4 K k1 k2 k3 k4 K
Traditional method 0.62 -1.26 3.41 12.33 2.78 6.66 0.67 10.06 36.72 12.57
Blind Deconvolution without denoising -0.03 -43.77 48.57 361.98 90.99 0.03 45.91 73.67 562.01 12.23
Traditional method with denoising -0.80 -1.10 3.02 16.73 1.48 0.62 2.82 6.99 15.93 3.46
Blind deconvolution with denoising 0.00 -3.35 4.93 36.74 6.02 0.00 4.23 7.48 57.04 2.32
CV (%) k1 k2 k3 k4 K k1 k2 k3 k4 K
Traditional method 2.35 9.80 23.47 82.35 11.15 4.35 11.00 27.74 102.65 13.87
Blind Deconvolution without denoising 0.02 62.69 25.75 61.73 41.83 0.02 24.99 33.42 66.89 7.34
Traditional method with denoising 1.27 7.12 16.61 59.87 7.95 2.19 6.11 12.72 77.65 7.17
Blind deconvolution with denoising 0.00 4.43 4.63 26.48 6.22 0.00 4.37 6.86 35.80 2.00
Table 2: The bias (in percentage) and CV (in percentage) of the estimated k1-k4 and K for the four different methods.
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Figure 1: FDG model.

Figure 3: Difference between the TTACs obtained by
mathematically performing the convolution
integral to the PTAC and FDG model and that
obtained by using discrete linear convolution.
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Figure 4: Two-channel adaptive system.


