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Abstract

We present a computer vision system based on an inte-
grated neural network architecture. In the low level vi-
sion subsystem, a network of networks - a biologically
inspired network is used to recursively perform �lter-
ing, segmentation and edge detection; in the interme-
diate level and the high level, hierarchically structured
arrays of self-organizing tree maps - extension of the
popular self-organizing map are utilized to carry out
image/feature analysis. The system has been applied
to solve a number of real world problems. Some inter-
esting and encouraging results will be reported.

1 Introduction

Since the rebirth of neural computing in the middle
eighties, there have been heated debates as if neu-
ral networks are merely suited only for solving triv-
ial problems. We acknowledge that our limited bio-
logical insights in the natural neural networks restrict
our ability to closely mimic the biologic system, vision
system in particular. However, numerous experimen-
tal and theoretical research outputs con�rm that if the
biological facts are used wisely, neural networks are ca-
pable of addressing some large and complex problems
e�ectively [1-3].

This paper presents a computer vision system based
on an integrated neural network architecture. In the
low level vision subsystem, a network of networks
(NoN) [4] - a biologically inspired network is used
to perform �ltering, segmentation and edge detection
recursively; in high level analysis, an array of self-
organizing tree maps [5] - extension of the popular
self-organizing map and a structured feedforward neu-
ral network are utilized to carry out image analysis
and pattern recognition.

The motivation behind using the NoN and the
SOTM in the design of the vision system is the com-
patibility of the networks with vision processing. With
a modularized hierarchical architecture, the NoN is

ideal for parallel and homogeneous processing tasks
such as those in low level vision. On the other hand,
the SOTM uses a tree structure with minimum nodes
to describe the objects in the scene, providing a sensi-
ble representation of images for analysis and recogni-
tion. A common strength of the NoN and the SOTM is
that they are capable of adaptively identifying optimal
network architecture for the problem on hand. The
identi�ed optimal architecture leads to extremely fast
training and superior generalization which are both
critical in real world applications.

The system has been used for a number of appli-
cations: computer-assisted diagnosis of breast cancers
in digital mammograms; biomedical vision to analyze
neurological disorders; identi�cation of underwater ob-
jects through 3D sonar image processing and visual-
ization, etc. The performance of the system demon-
strates that this neural computing approach can pro-
vide robust and e�cient solutions to the problems on
hand. Some interesting and encouraging results will
be reported.

2 System Architecture

The proposed vision system consists of two processing
stages. In the �rst stage { low level vision, an re-
cursive processing model based on the NoN integrates
�ltering, segmentation and edge detection together.
The second stage { image representation and analysis,
uses an array of the SOTMs to extract features for
pattern classi�cation where a structured feedforward
neural networks is used. These processing stages will
be described in the following subsections.

2.1 Low Level Vision

Although many algorithms are available in the area of
low level vision for the extraction of edges [6], seg-
mentation [7] and �ltering [8], robustness and e�-
ciency characteristics are still typically lacking in these
methods. One possible reason for this is that they
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do not capture the adaptive and learning characteris-
tics which occur in biological vision. For example, in
computational vision. �ltering is popularly accepted
as the �rst processing step. However, the seemingly
progressive aspect of human perception suggests that
there exists interplay between �ltering and segmenta-
tion/edge detection.

To bring such paradigms into low level vision pro-
cessing, the biologically inspired neural computing
model - NoN is adopted. It proposes that by using
clustering method, adaptive �ltering and segmenta-
tion/edge detection are naturally linked to one an-
other. Based on this concept, the model recursively
processes image data to facilitate visualization and
high level vision processing.

The NoN incorporates an important biological fact
- sparse, hierarchical clustering of neurons in the
cortex - into the design of network architecture.
The model is then cast into a three-level NoN. The
recorded image data is categorized into the �rst level
clusters (homogeneous areas) with each data unit
forming one or more zeroth level clusters. The second
level connections represent the transition dynamics
between the �rst level clusters. The processing model
iteratively identi�es network architecture, adaptively
�lters the image, and perform segmentation/edge de-
tection in an recursive fashion. The model is schemati-
cally illustrated in Figure 1. It groups the image pixels
(neurons) into clusters, and determines the processing
hierarchy. The processing is initialized by estimating
the local statistical properties of the input image Io to
produce, in the order of, a network cluster structure
C1, a �ltered image I1, a segmentation map S1 and an
edge graph E1. Then the recursive procedure starts.
At the ith iteration,

a) the structure of the network is updated, Ci�1 !

Ci, using the segmentation map Si�1 and the
edge graph Ei�1 obtained from the previous iter-
ation, via the clustering method described in the
next section;

b) the structural information is then sent to the adap-
tive �lter to improve the quality of the �ltered
image, Ii�1 ! Ii;

c) based on the enhanced image Ii (and the structural
information Ci), the segmenter and the edge de-
tector update the segmentation map, Si�1 ! Si,
and the edge graph, Ei�1 ! Ei, respectively.

The recursive procedure terminates when the opti-
mization criterion adopted is satis�ed. The output
of the low level vision system: the �ltered image Iout,
the segmentation map Sout, and the edge graph Eout,
are the inputs to visualization, and/or image analysis
and feature extraction.
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Figure 1: The low level vision model

It is worth noting that the �rst level cluster rep-
resentation relates to texture/gray-scale segmentation
of the image, and the second level inter-cluster connec-
tions represent the transition dynamics between clus-
ters { the edges between homogeneous areas. Thus,
the processing model produces adaptive �ltering, seg-
mentation and edge detection in a recursive fashion.

2.2 Representation and Analysis

Kohonen's Self-Organizing Map (SOM) is as popular
method for prototype generation and clustering in or-
der to organize unlabeled feature vectors into natu-
ral clusters in such a way that the entities within a
cluster are more similar to each other than those in
di�erent clusters. However, the SOM has some unde-
sirable properties. When an input vector distribution
has a prominent shape, the results of the best-match
computations tend to be concentrated on a fraction
of nodes in the map. Therefore, the reference vectors
lying in zero-density areas may be a�ected by input
vectors from the surrounding nonzero distribution ar-
eas. This may cause statistical instability [9].

Based on the idea of SOM, we proposed a new
mechanism called self-organizing tree map in which
the relationships between the output nodes can be
de�ned adaptively during learning [5]. The cluster-
ing algorithm starts from an isolated node and co-
alesces the nearest patterns or groups according to
a hierarchy control function from the root node to
the leaf nodes to form the tree. The SOTM map-
ping projects an input pattern x = (x1:::xN ) 2 RN

onto a tree node. With every node i, a weight vector
wj = [w1j ; :::wNj ]

T
2 RN is associated. The pro-

posed approach has the advantage of accurately lo-
cating cluster centers, and preserving topological rela-
tionships. In training of SOTM, within a given period
of the hierarchy control function, the weight vectors



of the tree nodes converge to the mean of their cor-
responding input vectors as the learning rate �(t) de-
creases. The SOTM provides a better and faster ap-
proximation of prominently structured density func-
tions.

Learning in the SOTM takes place in two phases:
the locating phase and the convergence phase. The
adaptation parameter �(t) controls the learning rate
which decreases with time as weight vectors approach
the cluster centers. During the locating phase, global
topological adjustment of the weight vectors wj takes
place. �(t) is maintained relatively large during this
phase. A small �(t) for the convergence phase is
needed for �ne adjustment of the map.

A hierarchy control functionH(t) controls the levels
of the tree. It begins with a large value and decreases
with time. It adaptively partitions the input vector
space into smaller subspaces.

With the decreasing of hierarchy control function
H(t), a subnode forms a new branch. The evolution
process progresses recursively until it reaches the leaf
node. The entire tree structure preserves topological
relations from the root node to the leaf nodes.

The dynamic SOTM topology is demonstrated in
the following example. In Figure 2, the learning of
the tree map is driven by sample vectors uniformly
distributed in English letter \K" as shown in Figure
2.a). The tree mapping starts from the root node and
gradually generates its subnodes as H(t) decreases.
Each time as H(t) decreases, �(t) starts from the ini-
tial state again. For certain H(t), �(t) decreases with
time. By properly controlling the decreasing speed
of �(t), the SOTM will �nd the cluster center just
like K-means does. During vector quantization, an
N-dimensional vector in Euclidean space is approxi-
mated by its closest representative among the �nite
set of the tree nodes (reference vectors). In the node
organizing process, from visualizing the tree map evo-
lution the optimal number of the output nodes can
be obtained as shown in Figure 2.b). The SOM is
also used to work on this example. as shown in Fig-
ure 2.c). Although the SOM's topology exhibits the
distribution of the structured input vectors, it also in-
troduces false representations outside the distribution
of the input space.

In image analysis and feature extraction, an array
of three SOTMs are used to represent the image to
be analyzed, one for grey scale representation, one for
texture representation, and one for edge graph repre-
sentation. Based on the characteristics of the images
being processed, the features extracted from di�erent
SOTMs are properly weighted, according to their rele-
vance with respect to the problem on hand. For exam-
ple, if the texture signi�cantly characterize the image,

a) b) c)

Figure 2: SOTM for representation: a) English letter
\K"; b) SOTM representation of \K"; c) SOM

representation of \K".

the corresponding features will be scale up. Other-
wise, they will be scale down. The weighted features
are then fused together by a structured feed-forward
neural network (SFFNN). Unlike the other feedfor-
ward neural networks, the SFFNN has an transpar-
ent structure between the input layer and the hidden
layer, and conventional fully connection between the
hidden layer and the output layer. The argument for
this architecture is as follows. A unary super feature
can be formed from the features extracted from the
same SOTM. On the other hand, a binary super fea-
ture can be formed by the fusion of features from two
SOTMs. The six super features are �nally fused to-
gether by the fully connected second level to produce
the �nal result. This level of processing is schemati-
cally illustrated in Figure 3.
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Figure 3: Image representation and Analysis.



3 Experiment

The system has been used for a number of real world
applications. In this section, we will use representa-
tion of underwater objects through 3D sonar image
processing and visualization to demonstrate its per-
formance. An unknown underwater object was de-
tected by a high resolution sonar. Due to the complex
imaging conditions, the image was degraded by space-
variant degradation as shown in Figure 4.a). Major
processing results by our system are shown in Fig-
ure 4.b), 4.c) and 4.d), respectively. Figure 4.b) and
4.c) shows the recursive �ltering and the segmenta-
tion, and Figure 4.d) is the �nal description based on
texture and grey scale representations. Edge represen-
tation is of little use due to the nature of the image.

4 Conclusions and Future Work

We present a vision system based on a neural comput-
ing architecture. The low level vision part recursively
integrates adaptive �ltering, segmentation and edge
detection. The high level part uses an array of self-
organizing tree maps to represent the image for fea-
ture extraction, and a structured feed-forward neural
network to fuse the features to produce pattern clas-
si�cation. The system has been used in a number of
real world applications. A sonar image processing ex-
ample is given to demonstrate the performance of the
system. Through the research and development activ-
ities of this work, we conclude that, by incorporating
biological facts in architecture design, neural networks
can be used to resolve large scale and complex prob-
lems.
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Figure 4: Processing of a underwater image: a) The
recorded \mine" image; b) �ltered a); c)

segmentation of a); d) description of the image.


