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ABSTRACT

This paper is concerned with a class of dynamic estimation
problems in which the estimator has the ability to dynam-
ically select, from among a temporally evolving set of pos-
sibilities, the source of the data on which the estimate will
be based. After motivating and formulating this class of
\attentive estimation" problems in some generality, the pa-
per focuses on the special case in which the state of a linear
discrete-time dynamical system driven by gaussian noise is
to be estimated using linear measurements corrupted by
additive gaussian noise. This di�ers from the standard
Kalman �ltering problem in that the measurement map at
each time step is selectable from a pre-determined set of
such maps. When the system dynamics and noise statistics
are known, the problem admits a \sensor scheduling" solu-
tion, i.e., a criterion for measurement selection that can be
used to determine an optimal sequence of output functions
in an open-loop fashion prior to the onset of estimation.
When the noise statistics or other parameters are unknown,
however, closed-loop adaptive strategies for measurement
selection can improve estimator performance.

1. INTRODUCTION

The problem of deducing information about a physical envi-
ronment from measurements obtained by one or more sen-
sors arises in a myriad of engineering applications, includ-
ing numerous defense and surveillance applications. Con-
sequently, techniques of estimation in both static and dy-
namic situations and incorporating a wide variety of math-
ematical models of the physical processes involved have
formed a central theme in engineering literature for several
decades.

A \rule of thumb" regarding this kind of estimation
problem is that more data never hurts; data known to con-
tain no information about the parameters of interest can
always be ignored. Faced with deciding how to select and
con�gure sensors to measure a physical environment, this
more-is-better perspective suggests using as many sensors
with as much bandwidth, et cetera, as possible. In prac-
tical situations, however, sensor con�gurations compatible
with constraints on availability, cost, communication band-
width, processing power, and other limiting factors must be
selected.

It is noteworthy that biological sensory systems, many
of which exhibit performance far surpassing their engineer-
ing counterparts, have evolved toward the use of a small
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number of con�gurable sensors. Rather than having sev-
eral eyes, cats have only two eyes { each encompassing a
small high-acuity region (retina) surrounded by a �eld of
much lower acuity (periphery). Nevertheless, these animals
are exceptionally able in tracking and pursuit of maneu-
vering prey through the use of eye and head motions that
capitalize on the capabilities of their sparse optical sensor
suites. In loose analogy with the phenomenon of \atten-
tion" in biological systems, the term \Attentive Sensing" is
proposed to capture the broad class of dynamic problems in
which a subset of (in principle) available sensor data must
be selected from which information about an environment
or system is to be deduced.

This paper focuses on a particular attentive sensing sit-
uation: estimation of the state of a linear discrete-time dy-
namical system driven by gaussian noise using linear mea-
surements corrupted by additive gaussian noise. This is
similar to the standard Kalman �ltering problem except
that the measurement map at each time step is selectable
from a pre-determined set of such maps. When the sys-
tem dynamics and noise statistics are known, the problem
is shown to admit a \sensor scheduling" solution, i.e., a cri-
terion for measurement selection that can be used to deter-
mine an optimal sequence of output functions in an open-
loop fashion prior to the onset of estimation. When the
noise statistics or other parameters are unknown, however,
closed-loop adaptive strategies for measurement selection
can improve estimator performance.

2. ATTENTIVE ESTIMATION

2.1. Classical iterative estimation

A classical discrete-time iterative estimation problem in-
volves estimating the state xk of a linear stochastic system

xk+1 = Akxk + !k (1)

in which Ak is a matrix and the !k are independent vectors
of zero-mean gaussian noise with known covariance matrix
Qk. The estimate is to be based on noisy linear measure-
ments of the state

yk = Ckxk + �k (2)

where Ck is a matrix and the �k are independent vectors of
zero-mean gaussian noise which are independent of the !k
and have known covariance matrices Rk.

The optimal estimate of xn given y0,...,yn (in most com-
monly accepted senses [7]) is x̂n = E[xnjy0; :::; yn]. This
estimate is provided iteratively by the Kalman �lter.



2.2. Formulation of the attentive estimation problem

A related attentive estimation problem arises when the state
of the system (1) is to be estimated using noisy measure-
ments that are selectable from among a set of linear ob-
servation maps; i.e., Ck in (2) is selectable from a set Ck.
The goal in this situation is to choose a sensing strategy
fC0; :::; Ckg that provides an optimal estimate of x̂k of xk
from y0; :::; yk at each stage k. Throughout the remainder
of this paper, the optimization criterion will be taken to
be mean-squared error E[(xk � x̂k)

T (xk� x̂k)] = tr E[(xk �
x̂k)(xk�x̂k)

T ]. The approach described below is equally ap-
plicable to optimizing any function of the estimation error

covariance Pk
4
= E[(xk � x̂k)(xk � x̂k)

T ], however.
The Kalman �lter propagates pre-measurement error

covariance Sk and post-measurement error covariance Pk
according to [7]

Sk+1 = APkA
T +Qk (3)

Pk = (S�1
k

+ C
T

k R
�1
k
Ck)

�1

Examination of these equations makes the solution to this
problem evident: at each time step k, Ck should be selected
to minimize the trace of Pk.

Previously published work on this type of problem (e.g.,
[8, 10]) has emphasized the problem of calculating an ob-
servation map Ck that minimizes some given cost function
of Pk. The form of the second equation in (3) suggests the
formidability of such a calculation. Here, the collection Ck
is assumed to be �nite or parameterized in such a way to
allow an optimal or nearly optimal Ck to be found by ex-
haustive search or perhaps some e�cient search strategy on
the parameterized search space (e.g., a gradient or genetic
algorithm).

It is important to note that the solution described here
is an open-loop strategy. \Sensor scheduling" can be under-
taken based on knowledge of the system parameters before
any data are actually collected.

2.3. Examples of attentive estimation

This section presents two examples of attentive estimation.
In both cases, the state vectors are three-dimensional and
the observation maps are selectable to allow measurement
of exactly one of the states at each stage k (i.e., Ck =
f(1 0 0); (0 1 0); (0 0 1)g).

Example 1:

The system is of the form (1) with Ak = 0:1I (I is
the 3 � 3 identity matrix) and is driven by noise !k with
covariance matrix Q = diag (0:1 12:0 12:0) for all k. The
variance of the measurement noise is R = 1.

The behavior of the attentive estimator is depicted in
�gure 1. The attentive strategy collects data from sensors
2 and 3 at equal rates, but ignores sensor 1. This result
is intuitively appealing in that one would expect to devote
more attention to the states about whose behavior one has
less certainty (i.e., those with the largest variances should
be observed most often). The estimation error variances on
states 2 and 3 are bounded below by a bound depending on
the stability of A. In this case, the uncertainty about these

states is always greater than the uncertainty about state 1,
so sensor 1 is never sampled.

iteration

se
ns

or
 n

um
be

r

5 10 15 20 25 30 35 40 45 50

1

2

3

Figure 1: Attentive sensing with a decoupled and stable
system. The plot shows sensor number (1, 2, and 3) versus
iteration. Black bars indicate when each sensor is \on."
Sensor 1 is never measured because its associated state's
uncertainty is small.

Figure 2 shows smoothed estimation error as a function
of time k for �ve estimation strategies: (i) measure sensor 1
only, (ii) measure sensor 2 only, (iii) measure sensor 3 only,
(iv) measure sensors 1, 2, and 3 in a round-robin fashion,
and (v) attentive sensing. In this case, attentive sensing is
the best strategy with a mean-square error of 12.96 versus
24.67 for (i), 13.42 for (ii), 13.27 for (iii), and 17.08 for
(iv). For obvious reasons, however, strategies (ii) and (iii)
are nearly as good as the attentive sensing strategy in this
example.
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Figure 2: Smoothed estimation error as a function of time
for �ve sensing strategies using the system of Example 1.

Example 2:

The system is identical to that in Example 1 except for



the driving noise covariance matrix, which is

Q =

"
1:0 0:8 0
0:8 1:0 0
0 0 1:4

#

As shown in �gure 3, the attentive strategy now measure
all three states, but emphasizes the more uncertain state 3
over the others.
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Figure 3: Attentive sensing with a stable system driven by
colored noise. Sensor 3 is measured more frequently than
sensors 1 and 2 because its associated state uncertainty is
greater.

The attentive strategy also provided the lowest mean-
square estimation error among strategies (i){(v) in this ex-
ample, as expected.

3. ADAPTIVE ATTENTIVE ESTIMATION

The attentive estimation problem changes considerably when
the noise covariances are unknown and must be estimated
adaptively along with the state. The attentive estimation
algorithm's choice of measurement at each stage depends
explicitly on the covariance matrices Qk and Rk, as is ev-
ident from (3). This section develops an approach for at-
tentive estimation in the case of system and measurement
noise whose covariance matrices are unknown, but assumed
to be constant and diagonal. The approach is based on in-
novation monitoring in the Kalman �lter and is similar to
published adaptive Kalman �ltering ideas (e.g., [6, 9]). The
prototype version of this algorithm presented here also as-
sumes that the collection of observation maps available at
each time step consists of measurements of each individual
component of the system state. The algorithm's perfor-
mance is demonstrated in a simple example.

3.1. Problem formulation

Consider the linear system and measurementmodels of equa-
tions (1) and (2) in which the system noise has constant di-
agonal covariance matrix (i.e., Qk = Q = diag (q1; :::; qn))
and the observation maps Ck are selectable from among the
set of n-vectors with all zero entries except for a single en-
try of one (i.e., exactly one state can be measured at step

k). This implies that the measurement noise is scalar; it is
assumed to have constant variance R.

Consider the innovation sequence �k given by

�k = yk � Ckx̂kjk�1 = yk � CkAx̂k�1

where x̂kjk�1 denotes the (pre-measurement) estimate of
xk based on y0; :::; yk�1 and x̂k is the (post-measurement)
estimate of xk based on y0; :::; yk. The variance Dk of �k

belongs to the set fD1; :::; Dng where Dr denotes the rth

diagonal element of APk�1A
T plus qr +R.

With this notation, an algorithm for adaptive attentive
estimation is outlined as follows: (1) Start with a diagonal
estimate of Qi of Q with the entries of Qi chosen su�-
ciently large to ensure that they overestimate the entries of
Q. (2) Run the Kalman �lter with an attentive strategy,
as described above. (3) Compute estimates of D1; :::; Dn

from the data. (4) Compare the sample statistics of the
innovations to those predicted theoretically assuming Q is
correct. (5) Update Q by forming a convex sum of the cur-

rent estimate q̂r with D̂
r minus the rth diagonal element of

APk�1A
T � R (the weight of the update value in this sum

is controlled by an adaptation parameter 0 < � < 1).

3.2. Examples of adaptive attentive estimation

An example of adaptive attentive estimation using the al-
gorithm outlined above is as follows. The system has three
states, as in the earlier (non-adaptive) examples, and the
observation maps are again selectable to allow measure-
ment of exactly one of the states at each step k (i.e., Ck =
f(1 0 0); (0 1 0); (0 0 1)g). The system matrix is A = 0:25 I,
the actual value of Q is Qa = diag (1 1 2), and the initial
estimate of Q is Qi = diag (6 3 4). The measurement noise
is zero.

The adaptive attentive estimation strategy is depicted
in �gure 4. Sensor 1 receives attention initially due to the
large initial estimate of its associated driving noise vari-
ance. As the estimate of Q improves, the algorithm recog-
nizes that sensor 3 has the highest uncertainty and shifts
attention to that sensor. After 300 steps, the estimate
of Q in the adaptive attentive algorithm is Qattentive =
diag (1:46 1:41 2:09). Note that sensors 1 and 2 still receive
some attention after a large number of steps.

Figure 5 compares the smoothed estimation error as a
function of step k for the adaptive attentive algorithm and
a round-robin sensing strategy. Though its state estimation
performance is notably better, the attentive algorithm only
estimates Q well enough to determine the optimal sensing
strategy. The round-robin approach provides a better es-
timate of Q after 300 steps: Qrr = diag (1:09 1:06 2:14).

4. CONCLUDING REMARKS

This paper has described and outlined the importance of
a broad class of \attentive sensing" problems about which
relatively little research has been published. Approaches
to a particular type of attentive estimation problem have
been introduced and demonstrated in both non-adaptive
and adaptive cases.
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Figure 4: Sensing strategy produced by the adaptive at-
tentive algorithm for the system of Example 3. Sensor 1
receives initial attention due to the large initial estimate of
its associated driving noise variance. As the estimate of Q
improves, attention shifts to sensor 3.

Research currently underway is examining numerous as-
pects of attentive sensing including, in particular, develop-
ment of a more general adaptive attentive estimation algo-
rithm that eliminates simplifying assumptions made in this
paper.
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Figure 5: Smoothed estimation error as a function of step
k for the adaptive attentive algorithm and a round-robin
sensing strategy.

[5] D. Cochran and R. Martin, \Nonlinear �ltering models
of attentive vision," Proceedings of the IEEE Interna-
tional Conference on Circuits and Systems, Supplemen-
tary volume, pp. 27-30, May 1996.

[6] A.H. Jazwinski, \Adaptive �ltering," Automatica,
vol. 5, no. 4, pp. 475-485, July 1969.

[7] F.L. Lewis, Optimal Estimation. Wiley Interscience,
1986.

[8] D. Marr, Vision. W. H. Freeman and Company, 1982.

[9] R.M. Mehra, \On the identi�cation of variances and
adaptive Kalman �ltering," IEEE Transactions on Au-
tomatic Control, vol. AC-15, no. 2, pp. 175-184, April
1970.

[10] Y. Oshman, \Optimal sensor selection strategy for
discrete-time state estimators," IEEE Transactions on
Aerospace and Electronic Systems, vol. 30, no. 2,
pp. 307-314, April 1994.


