

A NEW DCT ALGORITHM BASED ON ENCODING ALGEBRAIC INTEGERS

V.S. Dimitrov, G.A. Jullien and W.C. Miller

VLSI Research Group
University of Windsor, Windsor, ON, Canada N9B 3P4

jullien@uwindsor.ca

ABSTRACT

In this paper we introduce an algebraic integer encoding
scheme for the basis matrix elements of DCTs and

IDCTs. In particular, we encode the function and

generate the other matrix elements using standard trigono-
metric identities. This encoding technique eliminates the
requirement to approximate the matrix elements; rather we
use algebraic ‘placeholders’ for them. Using this encoding
scheme we are able to produce a multiplication free imple-
mentation of the Feig-Winograd algorithm.

1. INTRODUCTION

The discrete cosine transform (DCT) plays a crucial role in
several image compression standards, JPEG, ISO MPEG-1
and MPEG-2, ITU-T H.261 [1-6]. These standards make use
of an 8x8 two-dimensional (2-D) DCT. Much of the research
and development activities have been oriented towards effi-
cient software implementations of algorithms for 8x8 DCT.
However, for higher ‘levels’ of the MPEG-2 standard, (e.g.
HDTV which requires 62,668,800 pixels per second [6])
VLSI hardware is the only realistic option.

For completeness, let us start with some definitions. For the
1-D DCT we adopt the definition of eqn. (1):

; (1)

where is a real data sequence of length . The inverse
DCT (IDCT) is defined as given in eqn. (2):

; (2)

where:

The two-dimensional DCT, used extensively in image pro-
cessing, can be viewed as a simple extension of the one-
dimensional case, as shown in eqn. (3) (forward) and eqn. (4)
(inverse.)

(3)

;

(4)

;

where:

and is an array of real data.

2. ALGEBRAIC-INTEGER INTERPRETATION

In [7] Cozzens and Finkelstein proposed a parallel algorithm
for computation of the DFT via computation of 1) algebraic-
integer quantization of the input signal (an outer level of par-
allelism) and 2) a residue number system (RNS) implemen-

8 8×

π
16
------ 

 cos

F k() 2 x n() π 2n 1+()k
2N

---------------------------cos
n 0=

N 1–

∑= 0 k N 1–≤ ≤

x n() N

x n() 1
N
---- F k() π 2n 1+()k

2N
---------------------------cos

k 0=

N 1–

∑= 0 n N 1–≤ ≤

F k()
F 0()

2
------------ k=0

F k() otherwise





=

F k l,() x n m,() π 2n 1+()k
2N

--------------------------- π 2m 1+()l
2N

---------------------------coscos
m 0=

M 1–

∑
n 0=

N 1–

∑=

0 k N 1–≤ ≤ 0 l M 1–≤ ≤

x n m,() 1
NM
--------- F k l,() π 2n 1+()k

2N
--------------------------- π 2m 1+()l

2N
---------------------------coscos

l 0=

M 1–

∑
k 0=

N 1–

∑=

0 n N 1–≤ ≤ 0 m M 1–≤ ≤

F k l,()

F 0 0,()
4

------------------ k=0,l=0

F k 0,()
2

----------------- k 0 l=0,>

F 0 l,()
2

---------------- k=0,l>0

F k l,() k>0,l>0











=

x n m,() N M×

tation of the arithmetic operations over algebraic-integers
(an inner level of parallelism). Because the structure of the
algebraic-integer quantization causes severe limitations
over the RNS moduli, the main problem is in finding a suf-
ficiently good compromise between these conditions.
Bequilard and O’Neil used a similar idea in deriving an
efficient RNS implementation of 2-D DCT [8]. Their
approach is based on special method for manipulating real

numbers of the form , - integers. Since the
cosines of the angles, participating in 8x8 DCT can not be
exactly represented in this form, the method suffers from
rounding-off errors.

The main purpose of our paper is to show that the use of
algebraic integers leads to fast and error-free implementa-
tion of DCT. The algorithm proposed does not require mul-
tiplications except in the final conversion from algebraic-
integer to real form.

A direct implementation of the 2-D DCT requires mul-
tiplications. By noting that each cosine part only varies
with one of the summations, the transform can be executed

by a row-column decomposition with only multiplica-

tions, that is, multiplications per pixel.

The elements of the transformation matrix are real numbers

of the form . Rather than using approxima-

tions to these elements (the classical procedure), we adopt
another encoding scheme oriented towards processing
numbers of this particular form. The approach can be
straightforwardly extended to other values of .

Let us look at the ‘first’ nonzero angle, that is . We can

rewrite in the form:

(5)

The remainder of the cosines participating in a 1-D 8-point
DCT definition can be similarly represented:

(6)

(7)

(8)

(9)

(10)

(11)

The other cosines can be easily computed by taking into
account the corresponding symmetries.

First of all, without compromising the calculations, we
omit the ‘2’ in the denominators. Let us denote

. is a root of eqn. (12):

(12)

The main trick is that the other numbers we would like to

handle (that is, can be represented as a

polynomial of .

Let us consider the following polynomial:

(13)

where are integers. Definitely, , that is

corresponds to the following particular choice for :

. Therefore, we have an

exact

 code for

. For the other cosines, it turns out that we can represent

them

exactly

 as a combinations of eight small integers .

Table 1 provides the corresponding coefficients:.

The other cosines can be obtained by changing the signs of

the numbers given, say, ,

therefore, .

We have therefore produced an error-free (infinite preci-
sion) representation of the coefficients necessary to evalu-

a b 2+ a b,

N
4

2N
3

2N

integer π⋅
16

------------------------ 
 cos

N

π
16

π
16
------ 

 cos

π
16
------ 

 cos 2 2 2++
2

----------------------------------=

2 π⋅
16

---------- 
 cos 2 2+

2
--------------------=

3 π⋅
16

---------- 
 cos 2 2 2–+

2
----------------------------------=

4 π⋅
16

---------- 
 cos 2

2
-------=

5 π⋅
16

---------- 
 cos 2 2 2––

2
---------------------------------=

6 π⋅
16

---------- 
 cos 2 2–

2
--------------------=

7 π⋅
16

---------- 
 cos 2 2 2+–

2
----------------------------------=

z 2
π
16
------ 

 cos⋅ 2 2 2++= = z

x
8

8x
4

– 20x
2

16x
2

– 2+ + 0=

2
integer π⋅

16
------------------------ 

 cos⋅

z

f z() aiz
i

i 0=

7

∑=

ai z 2 2 2++

ai

0 1 0 0 0 0 0 0, , , , , , ,()
z

ai

9 π⋅
16

---------- 
 cos

7 π⋅
16

---------- 
 cos–=

9 π⋅
16

---------- 
 cos 0 7 0 14 0 7 0 1–, , , ,–, , ,()→

ate 1-D and 2-D DCTs.

The next section discusses arithmetic operations with this
number representation.

3. ARITHMETIC OPERATIONS

The real numbers of the form of eqn. (5) form a ring, which

we shall denote as . The addition in this

ring is componentwise. The multiplication is equivalent to
a polynomial multiplication modulo

.

Now let us return to the original problem. The input data to
the DCT or IDCT are codes of the corresponding pixels,
non-negative integers, and the multiplications we require
are very simple. For example, if we have to multiply

times , this is equivalent to the operation

shown in Table 2.

It is easy to see that the multiplications by the integers in
Table 1 can be performed using, in the worst case, 1 addi-
tion/subtraction and 2 shifts. This worst case appears when
one needs to multiply s times 14 or 6.

For the inverse map, given a set of eight integers
, we require to find the value of

the polynomial for .

For the computation of a 1-D or 2-D DCT (or IDCT), what
we actually need is to recover the integer part of the result
and the most significant bit of the fractional part, to allow
correct rounding. In this case we may use the fact, that
can be approximated with very good precision in the form:

(14)

Summarizing, we have the following:
1. We may compute a 1-D 8-point DCT very quickly.
2. For 2-D DCTs we have several alternatives, and we

identify 4 possible alternative 2-D procedures below:

a)Eight 8-point DCTs (row-wise) - very fast; re-code
(polynomial evaluation); eight 8-point DCTs (column-
wise) - very fast; re-code (polynomial evaluation.)

b)Eight 8-point DCTs (row-wise) - very fast; eight 8-
point DCTs (column-wise) requiring polynomial mul-
tiplication where one of the polynomials is fixed; re-
code (polynomial evaluation.)

c)Compute 8x8 DCT as a sixty four 64-point inner prod-
ucts, using the fact that the products of the cosines can
be expressed efficiently as octaves.

d)Direct approach in computing 8x8 DCT

4. FEIG-WINOGRAD 8X8 DCT ALGORITHM

Given our present knowledge, a direct approach for com-
puting DCTs and IDCTs appears the most promising.
There exist a variety of techniques, allowing us to calculate
2-D DCTs and IDCTs avoiding row-column techniques. In
our opinion, the most promising algorithm is that proposed
by Feig and Winograd [10]. We do not explain it here, the
reader may find the details in [10]. We will only briefly
mention the general structure of the algorithm and the
application of our algebraic-integer encoding scheme.
1. Step 1 - preadditions stage, with 8-bit integers.
2. Step 2 - multiplication stage. This step requires multipli-

Table 1: The exact representation of the cosines
participating in the 8-point DCT

0 1 0 0 0 0 0 0

-2 0 1 0 0 0 0 0

0 -3 0 1 0 0 0 0

2 0 -4 0 1 0 0 0

0 5 0 -5 0 1 0 0

-2 0 9 0 -6 0 1 0

0 -7 0 14 0 -7 0 1

2 integer π⋅
16

------------------------cos a0 a1 a2 a3 a4 a5 a6 a7

2 1 π⋅
16

----------cos⋅

2 2 π⋅
16

----------cos⋅

2 3 π⋅
16

----------cos⋅

2 4 π⋅
16

----------cos⋅

2 5 π⋅
16

----------cos⋅

2 6 π⋅
16

----------cos⋅

2 7 π⋅
16

----------cos⋅

Z 2 2 2++

z
8

8z
4

– 20z
2

16z
2

– 2+ +

s

2
6 π⋅
16

---------- 
 cos⋅

a0 a1 a2 a3 a4 a5 a6 a7, , , , , , ,()

Table 2: Multiplication of integer number s times

, performed in

s

f z() aiz
i

i 0=

7

∑= z 2 2 2++=

2
6 π⋅
16

---------- 
 cos⋅ Z 2 2 2++

2
6 π⋅
16

---------- 
 cos⋅ 2 s

6 π⋅
16

---------- 
 cos⋅ ⋅

s 0 0 0, , ,
0 0 0 0, , , 

  2 0 9 0, , ,–

6 0,– 1 0, , 
  2s– 0 9s 0, , ,

6s 0,– s 0, , 
 

z

z 2 2
5–

– 2
7–

– 2
11–

+≈

8 8×

8 8×

cations by , and . Using the tech-

niques in section 3, these can be performed in an error-
free manner. The Feig-Winograd algorithm does not use
angles that are odd multiples of . Therefore, the
cosines we need can be simplified in an algebraic-integer
form as shown in Table 3:

The advantages of the Feig-Winograd algorithm are:

a)We need only quadruples (not octaves) to represent the
cosines used in the computations.

b)The maximal number we have to multiply by is 3.

c)The final reconstruction uses a polynomial of third
(not seventh) degree.

d)The representation of in canonic-

signed digit form needs fewer ones (assuming 12-bit

precision) than .

3. Step 3 - postadditions stages. This requires the additions
of quadruples, which is implementing in a component-
wise manner.

The final reconstruction depends on the precision used to

represent . Since the final result is in an error
free format, we can easily estimate the precision we need to
guarantee sufficient accuracy. If the input and output data

are 8-bits maximum, then the representation of as

 is sufficient.

Table 4 shows estimations for our algorithm and compari-
sons with the arithmetic complexity of Feig-Winograd [10]
and Duhamel-Guillemot [10] algorithms.

5. CONCLUSIONS

In this paper we have proposed a new approach aimed at
efficient computation of DCTs and IDCTs. The
approach is based on encoding the basis set using algebraic
integers. The main advantages of the method proposed are:

1) it is error-free up until the final reconstruction; 2) it
needs no multiplication, which is very suitable from VLSI
view point; 3) it can be combined with many already exist-
ing algorithms for DCT and IDCT. We have found the most
suitable 2-D DCT algorithm for this encoding scheme to be
the Feig-Winograd algorithm.

6. REFERENCES
[1] S.Winograd, “Arithmetic Complexity of Computa-

tions”, CBMS-NSF Conf. Ser. in Appl. Math., 1980.
[2] J.H.Cozzens and L.A.Finkelstein, “Computing the

discrete Fourier transform using residue number
systems in a ring of algebraic integers”, IEEE Trans.
on Inf. Th., 31, pp.580-588, 1985

[3] N.Ahmed, T.Natarajan and K.R.Rao, “Discrete
cosine transform”, IEEE Trans. Comput. C-23,
pp.90-93,1974

[4] K.R.Rao and P.Yip, “Discrete Cosine Transform -
Algorithms, Advantages, Applications”, New York,
Academic - 1990

[5] E.Feig and S.Winograd, “Fast algorithms for the dis-
crete cosine transform”, IEEE Trans. Sig. Proc.,
vol.40, No.9, pp.2174-2193, Sep. 1992.

[6] “CCITT Recommendation H.261”, 1990
[7] D.L.Gall, “MPEG: a video compression standard for

multimedia applications”, Comm. ACM, 34, pp.46-
58,1991

[8] P.Duhamel and C.Guillemot, “Polynomial transform
computation for the 2-D DCT”, Proc. ICASSP-90
(Albuquerque, NM), pp.1515-1518, 1990.

[9] A.L.Bequilard and S.D.O’Neil, “Systolic RNS com-
putation of the two-dimensional DCT in a ring of
algebraic integers”, Proc. of the 20th Annual Con-
ference on Inf. Sc. and Syst., pp.783-789, 1986.

[10] G.K.Wallace, “The JPEG still picture compression
standard”, Comm. ACM, vol.34, pp.31-44, 1991.

[11] G.Taylor and G.M.Blair, “VLSI module design for
the discrete cosine transform”, to be published in
IEE, Proc. Computers and Digital Techniques

Table 3: The algebraic-integer representation of cosines
for Feig-Winograd 2-D DCT and IDCT algorithms

Element a0 a1 a2 a3

0 1 0 0

-2 0 1 0

0 -3 0 1

π
8
---cos

π
4
---cos

3π
8

------cos

π 16⁄

2 π 8⁄cos

2 2π 8⁄cos

2 3π 8⁄cos

2 1*π
8

----------cos 2 2+=

2 1*π
16

----------cos 2 2 2++=

z 2 2+=

z

z 10.001010010000… 2 2
3– 5–

–– 2
9–

+≈=

8 8×

Table 4: Comparisons for computing 8x8 DCTs

Algorithm
Multiplica-

tions
Additions

Feig-Winograd 54 (16 bit) 462 (16 bit)

Duhamel-Guillemot 96 (16 bit) 484 (16 bit)

Algebraic-integer None 636 (12 bit)

