
A NOVEL LEARNING METHOD BY STRUCTURAL REDUCTION OF DAGS
FOR ON-LINE OCR APPLICATIONS

I-Jong Lin and S.Y. Kung

Dept. Of Electrical Engineering, Princeton University
Princeton, NJ

ABSTRACT

This paper introduces a learning algorithm for a neu-
ral structure, Directed Acyclic Graphs (DAGs) that is struc-
turally based, i.e. reduction and manipulation of internal
structure are directly linked to learning. This paper extends
the concepts in [1] for template matching to a neural struc-
ture with capabilities for generalization. DAG-Learning is
derived from concepts in Finite State Transducers, Hidden
Markov Models, and Dynamic Time Warping to form an
algorithmic framework within which many adaptive signal
techniques such as Vector Quantization, K-Means, Approx-
imation Networks, etc., may be extended to temporal recog-
nition. The paper provides a concept of path-based learn-
ing to allow comparison among Hidden Markov Models
(HMMs), Finite State Transducers (FSTs) and DAG-Learning.
The paper also outlines the DAG-Learning process and pro-
vides results from the DAG-Learning algorithm over test set
of isolated cursive handwriting characters.

1. INTRODUCTION

The workhorse for temporal recognition problems has been
the Hidden Markov Model. In cursive handwriting and in
speech recognition, HMMs are a popular and high quality
solution [2]. However, from a perspective of structural in-
tegration, the current HMM Learning theory accepts only
single-path structures (vs. multi-path graphs) and is restricted
by its inability to expand or reduce its own structure.

Finite State Transducers (FSTs) [3] have these structural
capabilities, manipulating complex multi-path input and op-
timally reducing structure through a state minimization al-
gorithm. In recognition problems, FSTs are primarily used
in grammar modeling, word-lattices and other high-level
constructs. However, the FSTs are less applicable to gen-
eral signal processing because the current domain of FSTs
is restricted to the discrete, finite-element languages.

DAG-Learning has much in common with both HMMs
and FSTs. While HMM learning is a parametric optimiza-
tion technique where structure is optimized implicitly, DAG-
Learning optimizes structure and locally optimizes parame-
ters once structure is set. This change allows DAG-Learning
to be compatible with multi-path segmentation schemes [1].

Input to
Model

Solution Drawbacks

HMM Sequences
(single path
input)

Locally opti-
mal general
solution

Single Path
Restrictions,
Fixed Size

FST Multi-path
input,
discrete
finite-
element
language

Optimal
Solution

Explicit
Quantization

DAGs Multi-path
finite-length
input
(acyclic)

Heuristic
acyclic
solution

Time/Size
Inefficiency

Table 1: Comparisons between HMM, FST and DAG-
Learning

Given a partial order, DAG-Learning synchronizes data from
multiple sources and different segmentations and subsequently
compresses the synchronized segments. DAG-Learning ex-
tends the concepts of FSTs to a broader concept of similarity
over real value signals (see Table 1).

1.1. Path-Based Learning
The common link among the three models of HMMs, FSTs
and DAGs is that the path1 can be considered as the ba-
sic unit of learning. In each case, the process of learning
creates a graph whose paths describe a set of inputs graphs
and in which criteria of accuracy, retrieval time and storage
requirements are optimized. The three learning algorithms
can be stated optimizations of a path-based problem as fol-
lows (see Table 2):

Let there be functionS that measure similarity between

paths (denoted as
;

p ). The similarity function should be
reflexive and symmetric. An important metric is how two

1Given a graph with two distinguished nodes, a source and a sink, a
path in this paper corresponds to the subgraph of nodes and edges that lead
from source to sink.



paths compares withS to an unknown input. Under the
conditions that similarity function is well-behaved, it is as-
sumed that, for a given error value�,

8
;

x; jS(
;

x ;
;

p1)�S(
;

x;
;

p2)j � �) 9�;S(
;

p1;
;

p2) � � (1)

Definition 1 (Path-containment) Let there be graphs,G1

andG2. G1 is said to path-containG2 (G1

;

� G2) if, for a
given�,

8
;

p12 G1; 9
;

p22 G2; s.t.S(
;

p1;
;

p2) � � (2)

Definition 2 (Path-equivalence)Let there be graphs,G1

andG2. G1 is said to be path-equivalentG2 (G1

;

= G2) if,
for a given�,

(G1

;

� G2) ^ (G2

;

� G1) (3)

Note that path-equivalence is not graph isomorphism.

Definition 3 (Path-Learning Problem) For a given simi-
larity function and a parallel network of input graphs, the
path learning problem is to find a graphG with least num-
ber of nodes and/or edges that is path-equivalent toG.

Testing for Path-Containment or Path-Equivalence and
the Path-Learning problem itself are all NP-hard (simple re-
ductions to 3SAT).

HMM and the other derived HMMs (such as autore-
gressive HMMs) solve this problem by starting with a fixed
structure and modifying its parameters to maximize the ex-
pected log probability of state sequences to match the se-
quences seen in the test set.

Finite State Transducers minimize their structure by ex-
ponentially expanding the graph, but optimally minimizing
the expanded graph in linear time. Since elements of the in-
put language are finite and discrete, their similarity function
is an equivalence relation.

DAG-Learning borrows many concepts from the FSTs,
but places the learning algorithms over a different domain,
sequences and/or acyclic multi-path graphs of real values.
On a real-valued domain, it is unlikely thatS is transitive,

(S(
;

p1;
;

p2) � �) ^ (S(
;

p2;
;

p3) � �) 6) S(
;

p1;
;

p3) � � (4)

and thereforeS is not an equivalence relation. Without this
vital characteristic of transitivity and an infinite element lan-
guage, the current FST minimization is not applicable.

2. DAG-LEARNING

With DAG-Compare as its retrieval function, DAG-Learning
is a subset of graph optimization techniques for path-learning
problem that attempt to maintain path-equivalence. Although
graph optimization can accept any graph-to-graph related
reduction transforms [4], DAG-Learning divides its graph

Learning
Algorithm

Optimization Technique
for the Path-Learning Problem

Hidden
Markov
Model

Maximization of � through EM
maximization of expected log prob-
ability over the set of sequences

Finite State
Transducer

Optimal reduction (exponential in
time and space) under language re-
striction

DAG-
Learning

Optimization of structure through
graph transformations that main-
tain path-equivalence

Table 2: Learning algorithms framed within the path-
learning problem

a) b)

c) d)

Figure 1: Steps in DAG-Learning with the dashed lines
representing reducible sets a) Set of exemplars with ini-
tial structure to be formed b) initial structure with reducible
nodes c) reduced node structure with reducible edges d) fi-
nal DAG-Learned structure

transformations into separate node and edge reductions. DAG-
Learning can be considered a divide-and-conquer technique
that first synchronizes the segments of different examples
(node reduction) and then uses standard data compression
techniques on sets of synchronized edges to reduce their
number (edge reduction).

2.1. The Initial Structure
As shown in figure 2 a, the initial structure for DAG-Learning
is a parallel network composed of exemplars. A classifier
that uses this initial structure implements Nearest Neigh-
bor classifier with the DAG-Compare as distance criterion.
As with the nearest neighbor recognizer, the space require-
ments limit its practicality and motivates reduction through
DAG-Learning.

2.2. Node Reductions
As shown in figure 2 b, DAG-Learning next identifies re-
ducible nodes, i.e. nodes whose merger do not violate the
path-equivalence between the original graph and its reduced



G

A B

X

Figure 2: Induced graphs of graph G w.r.t. A is the upstream
graph; B is the downstream graph.

version. In physical terms, node reducibility corresponds
where physical breaks in the data stream can be synchro-
nized w.r.t. the partial ordering imposed by the graph. This
ordering is determined by their relative position of the seg-
ments which come before and after the break in partial or-
der. In the acyclic graph, this ordering induces two sub-
graphs relative to the node that corresponds to the break,
the upstream and downstream graph: one from all the paths
from source to the node and the other from all paths from
the node to the sink, respectively (see Figure 2). A family
of node reductions is based upon path-containment of these
subgraphs.

For complete graphs,G1 andG2, path containment is
calculated from Eq. 2 and the definition of the DAG-Compare
operation:

min
;

p12G1

 
max
;

p22G2

S(
;

p1;
;

p2)

!
� � (5)

min
;

p12G1

(DAG Compare(
;

p1; G2)) � � (6)

To calculate these path containment over induced sub-
graphs, a similarity score over partial paths must be defined.
Using the recurrence relation form for the similarity score
as dictated by [1] and a function�(X1; X2) that estimates
the partial score between all paths that end at nodeX1 and
all paths that endX2, we can now define a partial similarity
scoreS 0, for a given pair of nodeX1; X2 as follows. Let

;

x1

be the path along
;

p1 from node X to the sink, similarly for
;

x2.
S 0(�(X1; X2);

;

x1;
;

x2) = S(
;

p1;
;

p2) (7)

With this definition and by modifying the basis of the
DAG-Compare operation to accept any starting value, up-
stream path-containment is defined as:

min
;

a12A

DAG Compare(
;

a1; A2; �(src:; src:)) � �(X1; X2)

(8)
Downstream path-containment is defined as:

min
;

a12A

DAG Compare(
;

a1; A2; �(X1; X2)) � � (9)

The function� is not known, but in practice can be approx-
imated well.

With these definitions, three node reductions are listed
below. Two nodes in a graph,X1 andX2 whose upstream
and downstream graphs areA1(A2) andB1(B2), respec-
tively, can be merged together if they satisfy any of these
three path-containment conditions, using Eqs.8 and 9:

Upstream Equiv.: A1

;

= A2 (10)

Downstream Equiv.: B1

;

= B2 (11)

Subsumption: (A1

;

� A2) ^ (B1

;

� B2) (12)

or (A2

;

� A1) ^ (B2

;

� B1) (13)

When up/downstream path-containmentand possible node
reductions have been calculated, the optimal reducible sets
of nodes must be found. This problem reduces to the NP-
complete problem of graph coloring. For our application,
we use a simple greedy algorithm for our application. Sub-
sumption merging reduces to the NP-complete problem of
node covering. Once again, for our application, we use a
greedy algorithm.

Over the last four paragraphs, we have identified three
separate NP-complete problems for DAG-Learning. In prac-
tice, heuristic solution can be used to arrive a non-optimal,
good quality solution (see Section 3).

2.3. Edge Reduction
As shown in figure 2 c, after node reduction, a set of edges
may share the same starting and ending nodes. These edges
are synchronized w.r.t. the partial ordering of the segmen-
tation. Edge reduction compresses the synchronized data
by representing multiple vectors with a fewer vectors. Us-
ing the inverse of the similarity function as distance, edges
can be reduced or modeled through a number of data com-
pression techniques such as Vector Quantization, K-means,
approximation networks, Gaussian distribution, etc.

3. RESULTS

A simple DAG-learning algorithm which uses greedy algo-
rithms for coloring and VQ for edge reduction was tested on
a set of DAG-coded isolated cursive lowercase letter char-
acters from ten different writers. The processing of data
is described in [1]. To ensure that DAG-Learning has ba-
sic characteristics of a learning algorithm, the relationship
between the size of training set and their resulting DAG-
Learned network must be established.

The first characteristic of a learning algorithm is that
the the network converges if given an infinite amount of in-
formation about a process. HMMs reach a local optimal
through the Baum-Welch learning rules and FSTs reach a
global optimal size through learning. Currently, we cannot
prove whether the size of learned network will converge.
Results in figure 3 show empirically that DAG-Learning
asymptotically reaches a fixed size (dependent on�) as the
number of examples increase.



0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40

S
iz

e
of

S
tr

uc
tu

re
(N

od
es

+
E

dg
es

)

Number of Exemplars

Initial Structure 3

33
3
3
33
3
3
3
33
3
3
33
3
3
33
3
3
33
33
3
3
3
3
33
3
33
33
33
33
3

DAG-Learned,� = 0.3�Intra-class Mean +

++++
+++++

+++++++
+++++++++

++++
++++++++

++++

DAG-Learned,�=0.1�Intraclass Mean 2

2222
2222222

2222222222222222222222222222

Figure 3: Structural Convergence in DAG-Learning: Note
that, on a increasing set of lowercase a’s from single writer,
the untrained structure increases linearly while the DAG-
Learned structure reaches an asymptote dependent on�.

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16 18 20

R
ec

og
ni

ze
r

S
pe

ed
(le

tte
r/

s)

Error Rate (%)

DAG-Learned (Top 1) 3

3

3

3

3

3 Untrained (Top 1) +

+

+

+

+
+

DAG-Learned (Top 3) 2

2

2

2

2

2

Untrained (Top 3) �

�

�

�

�
�

Figure 4: Speed vs. Accuracy Trade-off: Results are writer-
dependent recognizer. The points on the line count off the
number of exemplars per class used, starting from right to
left, going from 1 to 5.

The second test is to show that learning improves the
accuracy vs. speed trade-off over a Nearest Neighbor type
rule. Results in figure 4 is from a writer-dependent isolated
cursive letter recognizer over ten different writers, using 1 to
5 exemplars per writer. Results show that the speed vs. ac-
curacy curve always favors DAG-Learned recognizer over
the untrained recognizer, even with the small number of ex-
emplars.

The final test is to show that the network generalizes
data such that comparison of different types of examples is
invariant to writer style, noise and other distortions. The
writer-independent isolated cursive letter recognizer takes
its training set from six writers with 65 exemplars per letter.
The test set is from four unseen writers with 60 of exam-
ples per letter. Results in table 3 show a 4.0% loss in top 1
accuracy, 0.1% loss in top 3 accuracy, but the speed of the
DAG-Learned recognizer is 2.76 of the untrained.

Accuracy Speed Size
(Top 1/Top 3) (letter/s) kV k+ kEk

Initial
Structure

85.1% / 96.4% 0.086 29894

After DAG-
Learning

81.1% / 96.3% 0.238 11642

Table 3: Results from a Writer-Independent Isolated Cur-
sive Letter Recognizer, using 6 different writers with 65 ex-
emplars per class. Test set was 4 unseen writers, with 40 ex-
emplars per class. Note DAG-Learned recognizer is 176%
faster than the untrained one.

4. CONCLUSION

DAG-Learning is a novel learning algorithm that blends sig-
nal processing techniques with the FSM minimization.

DAG-Learning and HMM training are also both com-
plementary and orthogonal optimization techniques, given
a few minor modifications to each side. Once the DAG-
structure has been fixed, E-M learning can be applied to
maximize the edge parameters. Considering only left-right
(Bikel) Markov models, DAG-Learning can initialize struc-
ture or form an inter-class training by re-integrating failed
sequences for retraining.

This paper completes the basic algorithmic kernel for
DAG computation and gives adaptability to the framework
of the DAG recursive structure [5]. Our future research will
explore the representation and comparison of multidimen-
sional input (text, images, video, etc.), using multi-axial
segmentation DAGs.

5. REFERENCES

[1] I-Jong Lin and S.Y Kung. Coding and comparison of
dags as a novel neural structure with applications to on-
line handwriting recognition.To appear in IEEE Trans-
actions in Signal Processing Special Issue Neural Net-
works, 1996.

[2] Lawrence R. Rabiner. A tutorial on hidden markov
models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–86,February 1989.

[3] Mehryar Mohri. Finite-state transducers in language
and speech processing.Computational Linguistics, 23,
1997.

[4] Y. Le Cunn, L. Bottou, and Y. Bengio. Reading checks
with multilayer graph transformer networks. InPro-
ceedings of ICASSP 1997, volume 1, page 151, 1997.

[5] I-Jong Lin and S.Y Kung. A recursively structured so-
lution for handwriting and speech recogntion. InPro-
ceedings of 1997 IEEE Workshop on Multimedia Signal
Processing, pages 587–592, 1997.


