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ABSTRACT

The nonlinear write process of magnetic recording al-
lows to write the symbols �1 only. The magnetic chan-
nel is a di�erentiating channel. The locations of the
transitions from +1 to -1 and vice versa in the input
signal to the magnetic channel are important for the
received waveform.
This paper de�nes a noise enhancement constrained, �-
nite dimensional equalizer. This equalizer trades some
misequalization of the data signal for less noise en-
hancement after the equalizer. In a second step the
misequalization is decreased by the precoding. Pre-
coding shapes the communication signal before enter-
ing the communication channel. Since precoding works
on the noise free signal, there is no noise enhance-
ment. Since precoding in magnetic channels is lim-
ited to shifting the positions of the transitions around,
precoding does not allow for full equalization at the re-
ceiver. Therefore the equalizer in the receiver and the
precoder are optimized. In order to �nd the optimal
transition positions a linearized representation of the
transition shift is produced. This representation leads
to a constrained optimization problem.

1. INTRODUCTION

Maximum likelihood detection in the presence of long
channel impulse responses is expensive when built in
hardware at the speeds magnetic recording demands.
Thus most schemes use an equalizer to shape the chan-
nel impulse response into a partial response target. The
maximum likelihood detector uses this shorter target.
Since the target impulse response is shorter than the
channel impulses response the equalizer slims the pulse
by boosting the higher frequency components of the
signal. This boosts also the noise for the higher fre-
quencies. Boosting the noise results in a suboptimal
behavior of the ML detector.

Equalization using �nite dimensional equalizers is con-
sidered in [1]. Here we consider a data source d(k), an
equivalent digital magnetic channel hC(k), an AWGN
noise source n(k), an equalizer hE(k) and a target hT (k)
for a partial response maximum likelihood algorithm.
The equalizer is constrained by its noise enhancement.
A linearization of the shift of the position of a transition
is the di�erentiation of the analog magnetic channel
model. Since we model the analog magnetic channel as
a superposition of sincs, the di�erentiation is superposi-
tion of cos�k

k
� sin �k

�k2
. The latter term vanishes except

for the k = 0 term, where the sum of the two terms
vanishes. Thus there are two �lters we can adapt, the
equalizer and the transition shift �lter hA(k).

2. CONSTRAINED EQUALIZER

2.1. Finite Dimensional Equalizer

Given the equivalent digital channel impulse response
hC(k), the �nite dimensional zero forcing equalizer is
found by solving the following problem

min
hE

jhC � hE � hT j
2;

where � denotes convolution. In matrix notation this
minimization problem can be expressed with the help
of the Toeplitz matrix:
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min
hE

(ThChE � hT )
T (ThChE � hT )



and its solution is:

hE = (TThCThC )
�1TThChT :

2.2. Maximal Boost Constrained Equalizer

If the maximal boost of the equalizer is to be con-
strained by a constant, the following constrained op-
timization problem can be set up:

min
hE

max
v(')

(ThChE � hT )
T (ThChE � hT )

subj:to hTEv(')v(')
�hE � ChTTv(')v(')

�hT;

'min � ' � 'max:

The noise enhancement of the equalizer within the fre-
quency band 'min � ' � 'max is bounded by the spec-
tral shaping of the target within the signal band. Some
code rate loss is accepted in magnetic recording, to code
out sequences that would rely on transmission of energy
close to dc or Nyquist frequency.
Constraining the equalizer will raise the misequaliza-
tion. This leads to misequalization data noise at the
detector. To lessen this e�ect, precoding is considered.

3. PRECODING

Since the precoder works on the data signal, the chan-
nel impulse response can be equalized by the precoder
without noise boost. One major draw-back in the ap-
plication of a precoder is that the sender has to have
knowledge about the channel. In transmission chan-
nels this involves a feedback channel from the receiver
to the sender. The magnetic channel does not change
much over the lifetime of a magnetic disk. Thus dur-
ing calibration of the disk, one is able to measure the
magnetic channel impulse response and compute the
optimal precoder for this channel.
Due to the nonlinear characteristics of the magnetic
read channel, the write waveform consists of two sym-
bols �1. Since the magnetic channel is di�erentiating,
only the transition positions are relevant for the re-
ceived signal from the disk. The precoder shifts these
transitions inside the bit window. This puts a limita-
tion on the available precoding equalization. Thus pre-
coding as a stand-alone equalizer seems unable to han-
dle all the equalization needs of a high-densitymagnetic
channel. It is useful in conjunction with a constrained,
�nite dimensional equalizer.

3.1. Linearization of the Transition Shift

At the receiver the signal passes a matched �lter ĥC(t),
which is the time reverse of the analog channel impulse

response hC(t). Following sampling the noise of the
signal is equalized by the noise whitening �lter hW (k).
This noise whitening �lter can be pulled back into the
analog domain as hW (t) =

P
hW (k)�(t � kT ). Here

�(t) is the Dirac function and T is the sampling period.
Thus there is an equivalent analog transfer function
hA(t) = hC(t)� ĥC(t)�hW (t) for the whitened matched
�lter.
As an approximation of the equivalent analog transfer
function hA(t), one can consider the interpolation of
the equivalent discrete transfer function of the channel
consisting of the magnetic channel, the matched �lter
and a discrete noise whitening �lter

~hA(t) =
X

hD(k)
sin�(k � t=T )

�(k � t=kT )
:

A transition shift will result in an impulse that can be
approximated by the Taylor series development for the
shift

h(t+�) = h(t) +
�

1!

dh(t)

dt
+ : : :

If the approximation to the equivalent analog impulse
response ~hA(t) is used, the derivative of the impulse
response can be computed in terms of derivatives of

the sinc function sin(� t)
� t

. The �rst derivative is

d

dt

sin(� t)

� t
=

cos(� t)

t
�

sin(� t)

� t2
:

Evaluating the derivative for the integer values k =
: : : ;�1; 0; 1; : : : results in

g(k) =
d

dt

sin(� t)

� t
(t = k) =

�
cos�k
k

; if k 6= 0;
0; if k = 0.

The second derivative

d2

dt2
sin(� t)

� t
= �

sin(� t)�

t
�

2 cos(� t)

t2
+
2 sin(� t)

� t3

evaluates 0 at 0. Thus the rest of the Taylor series will
be dominated by the third derivative of the channel
impulse response with respect to time.

h(k +�) � h(k) + �g(k) � h(k)

Using the linearization of the transition shift, the pre-
coder can be modeled by a direct path and the convo-
lution of the precoding �lter and the �rst derivative of
the sinc.

3.2. Precoding for the Constrained Equalizer

Given the impulse response of the constrained equalizer
hE(k), one can compute the error Ex(k) between the



target impulse response hT (k) and the convolution of
the magnetic channel hC(k) and the constrained equal-
izer hE(k).

Ex(k) = hT (k)� hC(k) � hE(k)

A precoder impulse response hA(k) is convolved with
the linear approximation of a transition shift hP (k) =
g(k) � hC(k) � hE(k) to yield the in
uence of the pre-
coder. This would yield the equation

ThP hA = Ex;

which should be evaluated in the mean square sense.
This formulation is still incorrect, since there are not
always edges to move around at the input of the pre-
coder. If one considers the statistical occurance of the
edges, then the equation is

ThP PdDdAhA = DdxEx:

Here Pd is a function depending on a data pattern d
and representing whether an edge is present or not and
can be moved or not. The matrices DdA and Ddx are
the in
uences of the data pattern. This equation has
to be solved in a mean square sense:

DT
dAP

TTThP ThPPDdAhA = DT
dAP

TTThPDdxEx:

Since this equation has to hold for all data patterns,
this equation can be solved using expected values. The
left hand side involves the fourth order expected values
of the data, the right hand side third order expected
values. The data consist of the transitions and has
the symbol set �1; 0; 1. No transition is represented
by 0 and has probability 1

2 , positive and negative tran-
sitions are represented by �1 and have probability 1

4 .
Disregarding the fact that positive and negative tran-
sitions have to interlace each other for a valid magnetic
recording signal, the expected values can be expressed
as:

E (jdkj dl dm) =

8<
:
0; if l 6= m;
1
4 ; if l = m; k 6= l;
1
2
; if k = l = m.

E (jdkj jdlj dm dn) =

8>>>>><
>>>>>:

0; if m 6= n;
1
8 ; if m = n; k 6= l 6= m;
1
4 ; if m = n; k = l; l 6= m;
1
4 ; if m = n = k; l 6= m;
1
4 ; if m = n = l; k 6= l;
1
2
; if k = l = m = n.

The matrix R is de�ned as R = TThP ThP . Let eS be
the Sth unit vector and Diag(R) be the diagonal ma-
trix that just has the diagonal values of the matrix R.

Then the equation for the precoder coe�cients can be
written:

�
R+Diag(R) + eSe

T
SR+ ReSe

T
S

�
hA =

2
�
ThP + ThP eSe

T
S

�T
Ex:

If the precoder could take in
uence at all times, the so-
lution would zero out the subspaces with theKA largest
singular values. KA is the dimension of the precoding
�lter hA. Since there are only the transitions to be
shifted, when the write current changes, the subspaces
are not zeroed out, but diminished by a factor. Thus
there is only a modest performance gain achievable by
precoding which shifts the transition times of the write
current.

4. NUMERICAL RESULTS

4.1. Modeling of the magnetic storage channel

The channel impulse response of the magnetic storage
channel is modeled by a blended Lorentzian-Gaussian
pulse. A Lorentzian isolated pulse is:

hL(w; t) =
1
w

1 +
�
(2t)
w

�2 :

A Gaussian isolated pulse is

hG(w; t) =
1

w
exp

�
�kt2

�
; k =

4 ln(:5)

w2
:

A 50:50 pulse blend is chosen to model the magnetic
head response. It rolls o� faster at high frequencies
than the Lorentzian model. The parameter w is the
width of the pulse at half the peak amplitude. Tomodel
a user channel rate of 3 and a code rate of 16/17, the
parameter w is 3 3

16
. The channel autocorrelation func-

tion was computed at an oversampling factor of 4. A
spectral factorization gives the minimal phase digital
impulse response of the channel. The desired target is
EEPR4, hT = ( 1 2 0 �2 �1 ).

4.2. Constrained Equalizer

The �nite dimensional (length 8) equalizer is constrained
to have not more than 15dB noise enhancement in the
band 0:0234 � ' � 0:4512. Here '=0.5 corresponds
to the Nyquist frequency. In Figure 1, the impulse re-
sponse of the constrained equalizer is shown as a solid
line, the impulse response of the unconstrained equal-
izer as a dash dotted line. The slightly higher high
frequency content of the unconstrained equalizer is ap-
parent from the time domain signals.
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Figure 1: Constrained Equalizer Impulse Response

4.3. Precoded Signal

The precoder shift impulse response is shown in Figure
2. The transition the output of this �lter in
uences is
the fourth one. Note the relatively small scale of the
y-axis, indicating only small overall shifts in the transi-
tions. On one hand for small shifts the linear model for
the shift holds best. On the other hand small shifts im-
ply only a small overall in
uence on the data noise. The
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Figure 2: Precoder Shift Impulse Response

data noise is graphed in Figure 3 for the constrained
equalizer (dash dotted line) and for the precoded con-
strained equalizer (solid line). Precoding allows one to
drop the misequalization by about 0.5dB. The maximal
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Figure 3: Data Noise vs. Equalizer Noise Enhancement

shift Smax of the precoder was computed as

Smax =
KX
k=1

jhA(k)j:

The maximal shift Smax is shown vs. the maximal
equalizer noise enhancement in Figure 4. Even the
worst case transition shift for a highly constrained equal-
izer of 5dB does not get higher than approx. 11% of a
bit window.
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Figure 4: Precoder Shift E�ort
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