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ABSTRACT

This paper proposes a novel speaker-independent (SI)
modeling for spontaneous speech data from multiple speak-
ers. The SI acoustic model parameters are estimated by in-
dividual training for inter-speaker variability and for intra-
speaker phonetically related variation in order to obtain a
more accurate acoustic model. The linear transformation
technique is used for the speaker normalization to extract
intra-speaker phonetically related variation and also is used
for the re-estimation of inter-speaker variability. The pro-
posed modeling is evaluated for a Japanese spontaneous
speech data, using continuous density mixture Gaussian
HMMs. Experimental results from the use of proposed
acoustic model show that the reductions in word error rate
can be achieved over the standard SI model regardless the
type of acoustic model used.

1. INTRODUCTION

For practical use of speech recognition in many applications,
speaker independent (SI) speech recognition systems using
continuous mixture density HMMs (CDHMMs) have been
developed. Recently, the speaker independent recognition
of spontaneous speech has been studying.

The spontaneous speech data sampled from multiple
speakers varies widely with regard not only to speech style
but also context, training a SI model with this spontaneous
speech data causes di�useness and bias of HMM parame-
ters. Furthermore, the number of speakers di�ers from one
speech unit to another, and this di�erence results in the
inter-speaker variability being represented incorrectly. As
a consequence, the discriminating capability of the stan-
dard SI model is saturated, because of the indistinct esti-
mation of HMM parameters is caused by mixing of inter-
speaker variability factor and intra-speaker phonetically re-
lated variation factor.

These problems have been addressed by using speaker-
normalization techniques, when generating the acoustic model.
The signal bias removal technique[1][2] has been used to
normalize the channel or speaker factor, and maximum like-
lihood linear regression (MLLR) [3], has been used to re-
duce inter-speaker variability[4][5][6][7]. Such speaker nor-
malized (SN) models, however require channel or speaker

adaptation prior to recognition process, because the models
contain no inter-speaker acoustic variability. A recognizer
without channel or speaker adaptation is desired for use in
speaker independent speech recognition systems.

We therefor propose a method for producing acoustic
model whose parameters are estimated by individual train-
ing for inter-speaker variability and for intra-speaker pho-
netically related variation. We call this named speaker-
normalized and speaker-independent (SN-SI) modeling.

In the following section, we begin with an explanation
of speaker normalized modeling that uses linear transforma-
tion. Next, generation of speaker normalization and speaker
independent model is described. In Section 3, experimental
results for a Japanese spontaneous database are given.

2. SPEAKER-NORMALIZED AND

SPEAKER-INDEPENDENT MODEL

The speaker-normalized and speaker-independent (SN-SI)
model is produced through the following two processing
steps:

Step 1. A speaker normalized (SN) model is trained us-
ing speaker normalization based on a linear transfor-
mation technique. The HMM parameters are esti-
mated by training for intra-speaker phonetically re-
lated variation.

Step 2. Inter-speaker variability is re-estimated by refer-
ring to the SN model to obtain the SN-SI model.

Figure 1 shows the conception of SN-SI modeling. Fig-
ure 1(b) expresses SN model distributions generated by the
Step 1. in order to reduction of the di�useness and bias from
the standard SI model distribution (shown in Fig. 1(a)).
The SN-SI model distributions shown in Fig. 1(c) represents
inter-speaker variability with reference to the SN model.

2.1. Speaker-Normalized Model

2.1.1. Speaker Normalized Training Data

As shown in Figure 2, the SN model is generated based
on speaker-normalization with linear transformation. The
speaker normalization is performed by determining the set



�O = [ �O1 �O2 : : : �OM ] of speaker-normalized training data se-
quences from the set O = [O1O2 : : : OM ] of training data
sequences obtained from the speech of M speakers (the ob-
servation sequence for speaker m is given by Om = [om1
om2 : : : omTm], where o is an nth-order vector and the sub-
script gives time). In this paper, the speaker adaptation
technique is used to obtain the speaker normalized training
data. We assume that the relative positions of the speaker
adapted distributions and observation vectors give speaker
normalized observation vectors.
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Figure 1: Output probability distribution of speaker nor-
malized and speaker independent model.

The speaker adapted model �̂m for speaker m is ob-
tained through speaker adaptation using the initial model
� and the training observation sequence Om. The MLLR
[3] is used for the speaker adaptation technique, and the
mean vector �j;k (distribution k within state j) of Gaus-
sian distribution is adapted to mean vector �̂j;k:

�̂
m
j;k = A

m
�j;k + b

m
; (1)

where Am is an n � n matrix and bm is a nth-order vec-
tor, both of which are estimated for each shared class of
Gaussian distributions.

The best state sequence pm = [pm1 p
m
2 : : : pmTm] is then

determined with the Viterbi algorithm by using �̂m, Om,
and the context of the utterances. Furthermore, the Gaus-
sian mixture distribution sequence qm = [qm1 q

m
2 : : : qmTm], on

which Om indicates the maximum likelihood in every best
state at each time, is extracted from the following equation:

q
m
t = arg max

q2Qm
t

�
cpm
t
;q � N (omt ; �̂

m
pm
t
;q; Upm

t
;q)
�
; (2)

where Qm
t is set of the mixture distributions within the best

state sequence at time t, c is mixture weight, and U is the
covariance matrix.
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Figure 2: Procedure for generating a normalized speaker
independent model.

The speaker-normalized observation sequence �Om = [�om1
�om2 : : : �omTm ] is then obtained from the following equation
using the mean vectors (before and after speaker adapta-
tion) for the mixture distribution qt in state pt:

�omt = o
m
t � �̂

m
pm
t
;qm
t

+ �pm
t
;qm
t
; (3)

The procedures described above are carried out for all the
speakers in order to obtain set �O of speaker-normalized
training data sequences.

2.1.2. Parameter Estimation of Speaker-Normalized Model

The speaker-normalized training data sequence �O is used
for the re-training of �. The HMM parameters are updated
(mean vector ��j;k, covariance matrix �Uj;k, mixture weight
�cj;k, transition probability �aij) with the following equations:
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where 
mt (j; k) is the expected number of observations in
state j mixture distribution k of �omt , �

m
t (i; j) is the ex-

pected number of transitions from state i to state j, and K
indicates the number of mixture in state j. The updated
acoustic model replaces � and the normalization is repeated
several times. The �nal model obtained is called SN model
��.

2.2. Generation of Speaker-Normalized and Speaker-

Independent Model

The inter-speaker variability is expressed through the merg-
ing of Gaussian distributions after a speaker adapted model
for each speaker is generated from the SN model.

1. As shown in Fig. 3(a), the adapted model for each
target speakers is generated with MLLR using the SN
model �� as the initial model.

�̂�
m

k;j =
�Am��j;k +�bm (8)

2. Mean vector ~�mj;k and covariance matrix ~Uj;k are de-
termined from equations (9) and (10) by using the
mean vector �̂�

m

j;k of the adapted model and the co-

variance matrix �Uj;k of the SN model to obtain the

SN-SI model ~� (shown in Fig. 3 (b)), whose transi-
tion probability and coe�cient of mixture weight are
equal to those of SN the model.
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3. EXPERIMENTS

3.1. Conditions

The proposed algorithm was evaluated by using Japanese
spontaneous speech data set. The experimental conditions
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Figure 3: Generation of speaker normalized and speaker
independent model.

are listed in Table 1. Travel arrangement conversation data
recorded in ATR [8] was used for speech data. The male,
female, and gender-independent acoustic models were gen-
erated using training data from 99 male speakers and 131
female speakers. The shared state structure of HMMs was
determined using the ML-SSS (maximum likelihood suc-
cessive state splitting)[9] algorithm, and a single state (10
mixtures) was used for the silent model. The MLLR for SN-
SI modeling used 16 shared classes (determined by cluster-
ing the Gaussian distribution of initial SI model according
to Kullback divergence). The vector b and diagonal com-
ponent of regression matrix A were estimated. The nor-
malization described in 2.1.2 was repeated, using the pa-
rameters estimated by the the Baum-Welch algorithm, �ve
times. The variable-length N -gram[10] was used for the
language model, and the recognition results were assessed
with the �rst candidate from beam search[11] that utilized
word graph.

3.2. Results

The continuous speech recognition test with the SN-SI model
using the data of 16 male and 19 female speakers was per-
formed. Table 2 shows the results of word error rates ob-
tained when the number of HMM states was set to 401, 601,
801, and 1001. The table also shows the word error rates



Table 1: Experimental conditions.
Analysis
� Sampling freq. 12k Hz
� Frame shift 10 ms
� Frame length 20 ms (Hamming window)
� Feature parameter 16-order cepstrum

+ 16-order �cepstrum
+ log power + �power

Speech data
� Travel arrangement task

� Training 99 male speakers
(13,000 words, 1237 utterances)
131 female speakers
(20,000 words, 1725 utterances)

� Test 16 male speakers
(2102 words, 196 utterances)
19 female speakers
(2844 words, 244 utterances)

HMM
� HMnet (5 mixtures/state) created with ML-SSS

+silent model with 1 state (10 mixtures)
Language model
� Variable length N-gram
{ Training 414,326 words (6,396 di�erent words)
{ Perplexity 19.34

obtained with the SN model and the standard SI model.
The results from the use of SN-SI models, for all type

of acoustic models, were superior to that of the standard SI
model. In case of 601 states male model that gave biggest
improvement in the test, the recognition error rate of SN-SI
model was reduced from 46.8% to 42.6% in comparison to
the standard SI model. This shows the e�ectiveness of in-
dividual training the parameters of inter-speaker variability
and intra-speaker phonetically related variation. The dis-
criminating capability was improved because of the reduc-
tion of the indistinct estimation of HMM parameters.

The SN model provided poorer recognition than dose
either the SN-SI models or the standard SI models, because
that contain no inter-speaker acoustic variability. To obtain
the su�cient performance, the SN model requires speaker
adaptation prior to recognition process.

4. CONCLUSIONS

This paper proposed a new acoustic modeling for spon-
taneous speech data from multiple speakers. To gener-
ate the accurate SI model, the HMM parameters were es-
timated by the individual for training inter-speaker vari-
ability and for intra-speaker phonetically related variation.
This proposed modeling was evaluated for Japanese travel
arrangement task using continuous density mixture Gaus-
sian HMMs without adaptation, and the performances ob-
tained using the proposed method was remarkable in com-
parison to the standard SI model regardless of the type of
acoustic model.
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