
1. INTRODUCTION

Adaptive echo cancellation in digital communication systems is
one of the most intensively investigated fields of application for
adaptive signal processing algorithms. So far, the Least-Mean-
Square (LMS) adaptive algorithm has been the most commonly
used approach due to ease of computation and optimality in the
case of Gaussian noise statistics. For a digital echo canceller it is
desirable to decrease the adaptation time, during which the
transmission of useful data is not possible. Nevertheless, many
other adaptive algorithms based upon non-mean-square error cost
functions can also be choosen to increase the speed of
convergence. Walach and Widrow have investigated the error of
the power 4 as an alternative cost function and the Least-Mean-
Fourth-Order (LMF) algorithm results [7]. Unfortunately, this
algorithm has stability problems and it is relatively sensitive to
noise due to the very large gradient terms which result for higher-
order representation of errors.

Another alternative approach [6] shows that the use of the
adaptive algorithm based on a cost function with the error power
r higher than quadratic can be advantageous. Based on this cost

function , the general form of the stochastic

gradient algorithm with non-quadratic exponent can be computed
using the simple recursive relation below

(1)

where  is the transpose of the vector of estimated filter

coefficients at time samplek,

(2)

 is the transpose of the input observations vector
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 is the error signal,N is the number of filter coefficients and

denotes the adaptation step size that controls the stability and the
rate of convergence of the algorithm. In the following section we
shall derive a new kind of algorithm using (1) in which the power

is adjusted using the value of . Some comments are given in

Section 3. Performance evaluation and experimental results from
computer simulations are also shown in the last section.

2. COST FUNCTION ADAPTATION

ALGORITHM

The signal-flow graph representation of data echo canceller is
shown in Figure 1. The error signal in terms of the actual echo

path output , attenuated far-end signal  and synthetic echo

signal  is

. (4)

The output of the estimated echo path  can be written as

(5)

We analyse the case of the cost function

(6)

where the power is a function only of the error modulus:

(7)

and we compute  with respect to each element of the general

impulse response:
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ABSTRACT

A new stochastic gradient algorithm for data echo cancellation,
based on the cost function adaptation (CFA) is proposed.
Qualities of the new adaptation algorithm as compared with that
of the least mean square (LMS) and the least mean fourth (LMF)
algorithms are demonstrated by means of simulations. Thus it is

shown that continuous and automatic, adaptation of the error
power yields a more satisfactory result. The cost function
adaptation allows an increase in convergence rate and, at the
same time, an improvement of residual error. The results were
obtained with non-Gaussian binary sequences of data in presence
of far-end signals in data echo-cancellers for full duplex digital
data transmission over telephone lines.
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(1)
Using the following formulae

(9)

(10)

we have

(11)

We follow the cost function adaptation algorithm when the power
is choosen in such a manner that respects the relation:

(12)

If we denote by   and  is the error modulus,

measured in dBs, it results that for CFA selected the gradient is

always zero, and the product  is constant.

We can admit also that during one iteration, the power is
constant. This is always true in practical problems. In this way
CFA may be seen as a piecewise non-quadratic algorithm, in
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which the weights are computed with

(13)

and the power is updated via

(14)

3. COMMENTS AND IMPLEMENTATION

First, the error must decrease and according with (14), we

recommend starting with a large power  and stopping with a

small power . Anyway we must avoid large gradients which

leads to divergence. In order to exploit both the noisy stability of
the LMS algorithm and the initially faster convergence of LMF,

we usually choose  and .

However as in almost all adaptive systems, the adjustment of r
depends on finite-time average characteristics rather than on
instantaneous values of the error. A direct implementation of the
previous relation (14) will lead to divergence.

In [2] the first decreasing smooth power-error algorithm was
proposed:

(15)

Since the output mean-square error is actually fluctuating, the
first 100 iterations used LMF and then the power is adjusted with
(15). The restriction imposed reduces the general improvements
of CFA algorithm. To avoid this condition, the power must be
bounded during the adaptation time, otherwise the algortihm
could diverge.

In an application such as data echo cancellation, the adjustment
is usually done by calculating the mean value of tap-error vector.
A normalised form of tap-error vector norm is used in the data
echo cancellers

(16)

and, it is selected rather than the output mean-square error due to
the high level of the far-end signal power.

Another CFA algorithm was proposed in [2]: the decreasing
staircase power-error algorithm. This algorithm has the
advantage of less computational effort by using only integer or
square root powers in its implementation. The adaptive filter
coeficients are updated with (13) and the power is computed
with:

(17)
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Figure 1. Signal-flow graph representation: AA-adaptive

algorithm; H(z)-echo path transfer function; H(z) -adaptive

filter transfer function.
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We shall show in the following another new method to design
better the CFA power-error relation.

Assuming that  and  are independent bipolar
sequences, from the sets  and,  respectively, we
have

(18)

and then

(19)

For  we obtain

(20)

and assuming that the channel is slowly varying, it results

(21)

We can approximate

(22)

Inserting the previous formula in (14), it results that the
computation of new power could be done with

(23)

where  is the normalised tap-error vector norm, measured

in dBs. This is the main formula for the CFA power-error
relation.

It is obviously that the necessary condition for  to be a

decreasing function of  is

(24)

If the statistical characteristics of the channel are not available, a

choice for  could be .

The convergence of CFA results if we assume that the power

is bounded:

(25)

and the proof is based on similar analysis with [6]. We can
conclude that a large start power means stronger conditions for
the convergence of CFA algorithm.
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ek yk fk ŷk–+ fk hn
ˆ hn– 

  xk n–⋅
n 0=

N 1–

∑+= =

ek
2

fk
2
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4. MODELLING AND SIMULATIONS

The simulator is a direct system modelling type where the echo
canceller is trying to model the echo path. The data echo canceller
is a 32 tap linear time varying FIR adaptive filter whose
coefficients are updated regularly by the adaptation algorithm.

The echo-path model uses a single pole single zero digital filter.
The transfer function of the echo path is

(26)

where . We choose the feedback coefficient  of the
echo path filter is in such a way that the power level of the
impulse response will be attenuated by 60dB, at 32nd sample:

. Thereafter the series is truncated.

The near-end signal sequence  is modelled by a random

bipolar sequence from the set . The attenuated far-end

signal sequence  is also modelled by an independent random

bipolar sequence from the set . The level of the
attenuated far-end signal power is -15dB.

Figure 2 shows the relation (23) in case of different  and

. It is clear now that an earlier start of CFA can affect the

convergence.

We start with LMF and follow LMF since the normalised tap-

error norm is less than the start value  corresponding to the

power 4 ( , otherwise the numerator is negative).

Then we continue with CFA updating the power with (23) and

using  instead of . In this way we avoid the
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Figure 2. Initial conditions of CFA: normalised tap-error
vector norm |p0| in dBs and the power.
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critical points of (12).

When  the CFA could be stopped or not. There are not

major differences between the two cases: the steady-state is
postponed and the speed of adaptation is improved (a little bit).

Applying (23) directly gives us the first final CFA algorithm: the

smooth decreasing error-power algorithm.The second final CFA
algorithm implemented is the decreasing staircase error power
algorithm and it has the advantage of less computational effort by
using only integer or square root powers. For this second
algorithm, we round the term from the right hand side of (23).
Note that the results between the smooth and the staircase power
error algorithms do not differ by much.

The plots shown in Fig. 3-4 were obtained for the smooth
decreasing error-power algorithm with the parameters given by

(27)

and the step size  was chosen as 0.001 in order to assure
convergence of the LMF algorithm. We replace the statistical
expectation operator E with an ensemble average of 20. The
convergence level was set 20dB below the far-end signal level.

The plots indicate the advantage of the new implementation. First
we have a fast convergence time,   initially the same as the LMF
and twice as fast as in the LMS case. Secondly, the results show
an improvement in residual noise levels, below those achievable
by the LMF alone.

5. CONCLUSION

A new algorithm for data echo cancellation based on cost
function adaptation has been described. The power of the error
function is adjusted according to an estimate of the error. The
results show that this algorithm is better than LMS and LMF
under the same conditions: providing a fast convergence time
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Figure 3. Normalised tap-error vector norm, dBs versus
the number of iterations in the case of LMS (i), LMF (ii)
and CFA(iii) with no average.
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(smaller than LMF and almost twice as fast as in the LMS case)
and, an improvement in residual noise levels.
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Figure 4. Normalised tap-error vector norm, dBs versus
the number of iterations in the case of LMS (i), LMF (ii)
and CFA(iii) with 20 averages.


