
A NEW APPROACH TO DATA CONVERSION: DIRECT ANALOG-TO-RESIDUE
CONVERTER

D. Radhakrishnan and A.P. Preethy

Nanyang Technological University,
Nanyang Avenue, Singapore 639798

ABSTRACT

A novel design of a direct analog-to-residue converter is
presented in this paper. The design makes use of two
successive approximation analog-to-digital (A/D)
converters, a few modulo adders and a small look-up
table. One of the digital-to-analog converters is
modified to generate outputs which are weighted by a
constant factor, and one of the comparators is replaced
by a difference amplifier. The look-up table needed is a
very small percentage of the entire chip area and is
shown to be only 840 bytes for a 36 bit residue number
system converter.

1. INTRODUCTION

Residue number systems (RNS) are becoming very
popular in many computation intensive applications like
DSP [4]. An RNS is defined by a set of relatively prime
integers m1 , m2 ,…,mr called the moduli of the number

system. Such a system provides unique representation

of numbers from 0 to M-1 where M mii
r=∏ =1 . Each

integer X is represented by an r tuple (x1 , x2 ,…, xr),

where each residue xi =X mod mi , defined as the least

remainder when X is divided by the moduli mi . In

RNS, arithmetic operations on large integers are done
by converting them into smaller residues and
performing the operations independently and all in
parallel, thereby speeding up the whole operation. In
present systems an analog signal is first converted into
binary and then a binary-to-residue converter is used to
generate the residues. The residue results produced at
the end of the processing is finally reconverted back to
binary. But this conversion from binary-to-residue and
from residue-to-binary are complex operations for a
general moduli set. Many researchers are therefore
exploring new ways of tackling this problem - the one
most sought after being the direct conversion of an
analog signal to the residue form, an analog-to-residue
(A/R) converter.

Recently a scheme for direct conversion from analog-to-
residue form using a flash converter was proposed [2].
A flash converter basically consists of 2n-1 comparators

and 2n resistors for n bit resolution [3]. The analog
voltage sample applied at the input makes, as many
comparators as possible within its voltage level, to
switch their states to 1’s. The rest of the comparators
being in 0 states, the resulting output is a thermometer
code. This thermometer code is converted into binary
using a decoder.

The flash A/R converter proposed in [2] uses a PLA,
latch, a code converter, a set of buffers and XOR gates
in addition to the comparators and resistor elements as
shown in Figure 1. The comparators are grouped into
M/mr groups, with mr outputs in each group. The mr-1
outputs corresponding to a non-zero residue is fed to a
buffer stage. The buffer outputs are connected to a bus.
The comparator with the lowest threshold voltage in
each group is identified as having the base value for the
group. The residues corresponding to the outputs of the
comparators in each group range from 0 to mr-1 with 0
assigned to the base comparator. Every input X belongs
to one of the above groups and hence the number of 1
outputs from that group uniquely identifies the residue
xr. For a given input X only one of the buffers is
enabled, this being identified by an XOR gate. A set of
2 input XOR gates are used for this purpose, with the
inputs of each gate connected from the outputs of
adjacent base value comparators. The outputs of the
enabled buffer are pushed into a latch which feeds a
PLA to generate the residue xr. The XOR gate with its
output at logic 1 uniquely identifies the group. Knowing
the group and the number of 1 outputs from that group,
each and every other residue can be uniquely identified.
Since the number of XOR gates equals M/mr, a code
translator using OR gates is used to form its binary
coding. The code translator output is also fed to the
PLA to generate all the other residues. The size of the

PLA in this case is () () l m mr ii
r+ × −=∑ log21 1 bits,

wherel
M

mr
= −





















log2 1 As can be easily seen from the

above, the PLA size, number of comparators and
resistors become prohibitively large as the converter
size increases. Hence this cannot be used for converter
sizes of more than 8-10 bits.

The major drawbacks of the flash A/D converter are the
large hardware requirement, high power dissipation and
sensitivity to comparator offsets [1]. For an n-bit A/D
converter 2n-1 comparators are required with offset
voltage of less than 1/2n. Because comparators with
small offsets are expensive to build and difficult to
design A/D converters with resolutions higher than 8
bits rarely use the flash architecture.

For almost all real world problems we need much higher
resolutions than 8 bits. This forces us to find other
methods for A/R conversion. One promising

approach will be to use a successive approximation type
of converter. In fact it may be noted that the most
widely used general-purpose A/D converter is the
successive approximation type. A block diagram of such
a converter is shown in Figure 2. A sample of the analog
input X appears at one input of the comparator. The
digital word being generated at the output register is
converted to analog voltage using a D/A converter and
compared with the analog input sample X. Starting with
all zeroes, a first ‘trial’ digital value is generated by
changing the MSB of the output register to 1. The D/A
converter converts this to an analog value VR, which is
then compared with X. If X<VR, the assumed bit of 1 is
rejected and replaced by 0. Otherwise, the 1 is retained.
Focus is next directed to the second most significant bit

of the trial value and is continued in a similar fashion
till all bit positions in the output register are compared.
The completion of conversion is triggered by a change
in the state of the comparator. At this time the
conversion stops and the output register contains the
digital word. The total time (worst case) needed for
conversion is n+1 clock cycles, as the trial bit has to
traverse all n bit positions of the output register. A
successive approximation A/D converter is reasonably
fast for many applications. Hence this is used as the
basic element in our A/R converter.

2. A SUCCESSIVE APPROXIMATION
A/R CONVERTER

A block diagram of the A/R converter is shown in
Figure 3. This is obtained by cascading two separate
successive approximation A/D converters. The sampled
analog input voltage X is applied to the input of the first
A/D converter. This stage is modified by replacing the
comparator with a difference amplifier (Amplifier 1)
and adding a weighting factor (the largest modulus mr)
to the output of the D/A converter. Hence the difference
amplifier 1 produces an output voltage equivalent to X-
i*mr during each successive step of the iteration, where i
represents the value stored in Register 1. The size of this
register is chosen to have k bits with

k
M

mr

= −




















log2 1 . Once all the k bit positions of

Register 1 are identified, the difference amplifier output
will become X- R*mr, where R represents the value
stored in Register 1. It can be easily verified that this
voltage X-R*mr <mr. The first stage of conversion
stops at this time.

The output of the difference amplifier 1 now represents
the voltage equivalent of xr= X mod mr. This residue
value xr can be converted to a digital output using any
one of the known A/D conversion techniques. In our
design, a successive approximation A/D converter is
used for this second stage also.

Figure 2. A Successive Approximation
 A/D Converter

Output
Register

Control
Logic

D/A
Converter

Digital
output

VR

X
+
−

Input
from
ladder

 ⊕

 ⊕

 ⊕
Buffers

m-1 m-1
+k

Code converter

PLA

Latch

Residue
outputs

Figure 1. Multiple Residue Flash Converter

BusLatch

k

The second stage converter is exactly similar to the one
shown in Figure 2. The output register size for this

converter is  l mr= log2 bits. The output of this

register represents the residue xr corresponding to the
input X with respect to the modulus mr. It may be noted
that the second stage conversion is to be delayed till the
completion of the conversion in the first stage.
Furthermore, the extra amplifier stage with gain mr

shown in Figure 2 can be easily incorporated into the
design of the D/A converter stage.

The thrust of the whole design depends on the
generation of the remaining r-1 residues. This must be
done at the cost of minimum extra hardware and
minimum delay. Our proposed architecture is based on
the observation that the contents of Register 1 (Front
end A/D converter) together with the output xr (second
stage A/D converter) uniquely identifies the original
input X, since X=R*mr+xr. Hence this will also identify
uniquely each one of the remaining residues x1 , x2 ,…,

xr −1 . One solution is therefore to use a PLA to generate

the above residues, with Register 1 and xr as inputs to
the PLA. But the size of this PLA becomes prohibitively
large even for very small word length RNS converters.
Hence a completely different design strategy by
partitioning Register 1 into a number of equal length
partitions is used in this paper. To efficiently use this
technique, we assume that the moduli are all of equal
word length with l-bits to represent each. First let us
consider the generation of residue xj corresponding to
the modulus mj. A residue generator for xj is shown in
Figure 4. Each partition group of Register 1 addresses a
ROM that is programmed to produce its residue with
respect to mj. These residues are generated
simultaneously and are added using modulo adders to
get the final residue. A total of r-1 similar stages are
needed to generate all the residues x1 , x2 ,…, xr −1 .

The conversion time for generating residue xr equals the
sum of the conversion times in both the A/D converter
stages. This time is given by k+l+2 clock cycles, where
k and l are the sizes of the registers in the first and
second stage A/D converters respectively. A normal
successive approximation A/D converter of the same
word length uses more or less the same number of clock
pulses for conversion of an analog signal to binary. The
maximum number of extra clock pulses needed for the
A/R converter will be 3 in the worst case.

The generation of the remaining residues need
additional delay. This extra delay is due to the small
ROM look-up tables and the modulo adder stages. If
Register 1 is divided into ‘p’ partitions of l-bits each,
then the number of modulo addition stages is

 log ()2 1p + . But as can be seen from Figure 4, a

large portion of these delays overlap with the
conversion time of the second stage. Hence all the
residues are generated almost simultaneously.

An example to illustrate the design of a 36 bit A/R
converter is given below.

Example1: A 36 bit RNS converter can be implemented
using eight 5 bit moduli 17,19,23,25,27,29,31 and 32.
This gives a total range of more than 37 bits. The largest
modulus in this case is mr =32. The length of the
registers for the first and second stage converters are
k=31 and l=5 respectively. The conversion needs a total
of 38 clock pulses to generate the first residue X 32 , for

any integer X within the range of 36 bits. Register 1 is
divided into 7 partitions, six of 5 bits each and one last
partition with a single bit. Each 5 bit partition uses a
ROM of size 32Χ5 to generate the residues, thereby
requiring a total of 192Χ5 per modulus. This amounts to
a total of 840 bytes of storage for the entire system. A
simple logic circuit can be used with the MSB bit to
generate its equivalent residue value. The converter also

Figure 4. Residue Generation Logic

Register 1

 Output
Register

l

l
2 l x l
ROMs

Modulo
Adders

l l

X mj

Residue
output

Second
A/D
Converter

Register 1

Control
Logic

D/A
Converter

Figure 3. A Successive Approximation
 A/R Converter

Amplifier
Gain=mr

X
+
− 1

X mrOutput
Register

need seven 5 bit modulo adders per modulus, thereby
requiring a total of 49 for the entire set.

3. CONCLUSIONS

The design of a direct A/R converter using two stages of
successive approximation A/D converters is presented
in this paper. The modifications needed in the A/D
converters are very minimal, one of the comparators
being replaced by a difference amplifier, and one D/A
converter output being modified by adding an extra
weighting factor. For generating all the residues, extra
memory storage and a number of modulo adders are
used. For a 36 bit converter this amounts to only 840
bytes of storage and forty nine 5 bit modulo adders.

The overall conversion speed of the proposed A/R
converter is very close to that of a similar A/D
converter, thereby eliminating the extra delay due to the
binary-to-residue converters used in conventional
approaches. Furthermore the conversion speed of the
second stage A/D converter can be increased by using a
flash A/D converter. This is possible since the
resolution of this stage is usually less than 8 bits (5 bits
for a 36 bit converter) even for a very large sized
converter.

The amount of ROM storage can be reduced further by
using multiple access techniques. By this method the

ROM size for a 36 bit converter can be reduced to a
mere 140 bytes of storage. But this in turn increases the
overall delay for residue generation. This delay could be
offset by using pipeline stages in the ROM, adder set
up.

ACKNOWLEDGEMENTS

This work was supported in part by the NTU Research
Grant under AcRF RG-22/95.

4. REFERENCES

[1] Cline D.W. “Noise, Speed, and Power Tradeoffs in
Pipelined Analog-to-digital Converters”. Ph.D.
thesis, University of California, Berkeley, 1995.

[2] Mandyam S. and Stouraitis T. “Efficient Analog-
to-Residue Conversion Schemes”. IEEE
International Symposium on Circuits and Systems.
New Orleans, USA, pages 2885-2888, May 1990.

[3] Miner G.F. and Comer D.J. Physical Data
Acquisition for Digital Processing, Prentice Hall,
New Jersey, 1992.

[4] Soderstrand M.A., Jenkins W.K., Jullien G.A., and
Taylor F.J. Residue Number System Arithmetic:
Modern Applications in Digital Signal Processing,
IEEE Press, New York, 1986.

