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ABSTRACT

The Subspace-based Reduced Rank and Polynomial Order
(RRPO) methods were proposed recently [1, 2, 3], which es-
timate a reduced order linear prediction polynomial whose
roots are the desired "signal roots". In this paper, we de-
scribe how to extend the RRPO methods to include con-
straints involving known signal information. Simulation
results indicate that by incorporating known signal infor-
mation such as source direction angle, the estimation of
unknown source directions can be signi�cantly improved,
especially when the unknown source is weak, closely spaced
and highly coherent with the known source.

1. INTRODUCTION

Constrained MUSIC was presented in [4] as a method of in-
corporating information regarding known source directions.
Knowledge of a source direction is equivalent to knowl-
edge of one of the dimensions of the signal subspace. By
constraining the signal subspace to include this dimension,
the performance of source location estimates can be signif-
icantly enhanced.

The subspace-based Reduced Rank and Polynomial Or-
der (RRPO) methods were proposed recently [1, 2, 3], which
estimates an rth order linear prediction polynomial (r: the
number of signals) whose roots are the desired "signal roots".
Simulation results [1, 3] indicate that the performance of the
RRPO methods approach that of Root-MUSIC or Minimum-
Norm, but with computational complexity of O(mr3) (m:
the number of array elements) as opposed to O(m2) for the
subspace-based method with full polynomial order. Savings
are achieved provided r3 < m. RRPO is similar to MODE
method previously proposed by Stoica et al [5]. However
variations on RRPO, such as weighting and model over�t-
ting [3], yield similar performance to MODE without the
costly second step of MODE.

In this paper, we describe how to extend the Reduced
Rank and Polynomial Order (RRPO) methods to include
constraints involving known signal information. The useful-
ness of the proposed constrained RRPO methods is demon-
strated by an application to DOA �ndings over a wide range
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of scenarios. Simulation results indicate that by incorporat-
ing known signal information such as source direction angle,
the estimation of unknown source directions can be signif-
icantly improved, especially when the unknown source is
weak, closely spaced and highly coherent with the known
source. For a more detailed discussion of constrained MU-
SIC approach, we refer to [4, 6, 7].

2. BACKGROUND

The array output snapshot vector can be modeled as

x(k) = As(k) + n(k): (1)

With this data model, the correlation matrix R takes the
form

R = E
�
x(k)x(k)H

�
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The EVD of the matrix R can be partitioned as

R = [Us Un]
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Then the following important property is observed

A
H
B = 0 (5)

where A = [ a(!1) a(!2) . . . a(!r) ] 2 Cm�r is an
unknown angular frequency matrix with
a(!) = [ 1 ej! . . . ej!(m�1) ]T 2 Cm. We also know
that

range(Us) = range(A): (6)

This results in the following key equation:

U
H
s B = 0() u

H
i B = 0 i = 1; . . . ; r; (7)

3. LINEAR CONSTRAINED RRPO METHODS

In this section, we will describe how to extend the Reduced
Rank and Polynomial Order (RRPO) methods to include
constraints involving known signal information.



3.1. Improved Subspace Estimation By Using Con-
straints

Assume that the directions of p (p < r) signals are known,
with directions �1, . . ., �p. Since array is assumed to be
calibrated (i.e., a(�) is a known function of direction angle
� ), the assumption that directions of p signals are known
is equivalent to the knowledge of the constraint matrix Ac

whose columns are the steering vectors corresponding to the
signals with known directions of arrival:

Ac = [ a(�1) a(�2) . . . a(�p) ] 2 Cm�p
: (8)

Taking the QR decomposition of Ac, we have

Ac =
�
Q1 Q2

� � R1

0

�
(9)

where R1 is a p�p upper triangular matrix, Q1 is the m�p
matrix containing an orthonormal basis for the column span
of the constraint matrix Ac

span(Ac) = span(Q1) (10)

and Q2 is the m� (m� p) matrix whose column span is in
the null space of AH

c

Q
H
2 Ac = 0: (11)

Then the vector y(k), which is the result of projecting snap-
shot vector x(k) into the null space of AH

c , may be ex-
pressed as

y(k) = PA?
c

x(k) = Q2Q
H
2 x(k): (12)

Before we proceed futher, let us partition the matrix A,
and the vector s(k) as follows:

A = [ Ac Auc ] 2 Cm�r (13)

and
s(k) = [ sTc (k) sTuc(k) ]T 2 Cr (14)

where the m � (r � p) matrix Auc is the matrix whose
columns are the steering vectors corresponding to the sig-
nals with unknown directions of arrival. Similarly, vector
sc(k) of length p, and vector suc(k) of length (r� p) repre-
sent signal modulation vectors corresponding to known and
unknown signals, respectively. With the above de�nition,
we can continue our derivation of y(k) as follows:

y(k) = Q2Q
H
2 x(k) = Q2Q

H
2 (Aucsuc(k) + n(k)) (15)

where we use ( 11 ) to obtain the last equality. From the last
equation, it is clearly shown that the e�ect of projecting the
snapshot vector x(k) into the null space of AH

c is that the
signals with known directions of arrival information have
been removed. De�ne Y as the data matrix containing N

transformed snapshot vectors

Y = [ y(1) y(2) . . . y(N) ] = Q2Q
H
2 X: (16)

The subspace information relating to the matrix Y can be
obtained either from SVD of Y or from the EVD of the
estimated correlation matrix R̂y de�ned as:

R̂y =
1

N

NX
k=1

y(k)y(k)H = Q2Q
H
2 R̂xQ2Q

H
2 (17)

with R̂x = 1
N

PN

k=1 x(k)x(k)
H : Since the matrix Y is ob-

tained by projecting the matrix X into the orthogonal com-
plement of the p dimensional space spanned by the con-
straint vectors, the rank of the matrix R̂y is clearly equal

to (m�p). It follows that matrix R̂y has p zero eigenvalues.
The remaining (m�p) eigenvalues are arranged in decreas-

ing order. Let �̂cs2 denote the diagonal matrix containing
the largest (r � p) nonzero eigenvalues of R̂y, and �̂cn de-
note the diagonal matrix containing the smallest (m � r)

nonzero eigenvalues. Using this notation, the EVD of R̂y

can be written as
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where m � p matrix Ûcs1 represents p dimensional con-
strained (known) portion of signal subspace, m � (r � p)

matrix Ûcs2 represents (r � p) dimensional unconstrained
(unknown) portion of signal subspace, and m� (m�r) ma-

trix Ûcn represents (m� r) dimensional noise subspace. So
the signal subspace and noise subspace relating to the ma-
trix Y can now be found in Ûcs = [ Ûcs1 Ûcs2 ] 2 Cm�r

and Ûcn 2 C
m�(m�r), respectively.

3.2. Linear Constrained RRPO Methods

After obtaining the subspace estimates by using constraints,
we can use them in the RRPO methods. In this section,
we will present summary on how to use them to produce
the various linear constrained RRPO methods. First de�ne
operator T as

T (ui; t) =

2
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where ui, the i
th eigenvector from the signal subspace Ûcs,

is de�ned as ui = [ u(i)1 u
(i)
2 . . . u

(i)
m ]T 2 Cm:

Linear Constrained RRPO Method

1. Construct matrix Ui = T (ui; r) for i = 1 to r using
the ith eigenvector ui.

2. The polynomial coe�cient vector b is calculated us-
ing:
a. EVD based method: Construct matrix Q based
on

Q =

rX
i=1

UiU
H
i (20)

and b is the eigenvector associated with the smallest
eigenvalue of the matrix Q.
b. SVD based method: Construct matrix � based on

� =
�
U�1 U�2 . . . U�r

�T
(21)

where � denotes complex conjugate. Then b is the
right singular vector of � corresponding to the mini-
mum singular value.



3. Frequency or DOA estimates can be deduced from the
roots of the polynomial b(z) associated with vector b.

Linear Constrained RRPO with Model Over�tting

1. Construct matrix Ui = T (ui; q) for i = 1 to r using
the ith eigenvector ui. and the matrix G based on

G =
�
U�1 U�2 . . . U�r

�T
: (22)

2. The over�tting coe�cient vector c, which is de�ned
as c = [ c0 c1 . . . cq ]T 2 Cq+1 with over�tting
order q > r, can be obtained by solving Gc = 0 using
LS or TLS method.

3. Frequency or DOA estimates can be deduced from the
signal roots of the polynomial c(z) associated with
vector c.

Linear Constrained RRPO with Noise Subspace Trans-

formation

1. Convert the matrix Ûcn into banded matrix B̂

ÛcnQ =

2
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= B̂ (23)

where J is permutation matrix, and get an estimate
of b by averaging.

b̂ =
1

m� r

m�rX
i=1

bi (24)

2. Frequency or DOA estimates can be deduced from the
roots of the polynomial b(z) associated with vector b.

4. SIMULATION RESULTS

For the simulations, a two source data model is used. We
assume that the source direction angle �1 is known and �2 is
unknown. The random complex amplitudes for two signals,
�i(k); i = 1; 2 are appropriately randomized to produce var-
ious types of coherence. The signal-to-noise ratio (SNR) of
the unknown signal is de�ned as

SNR =
E(j�2(k)j

2)

�2
(25)

where �2 is the white noise power (variance), and E[:] is the
expectation operator. For all simulations, we use the fol-
lowing parameters and assumptions, unless otherwise spec-
i�ed: �1 = 90o, �2 = 92o, and �1(k) = �2(k). We assume

that the array is linear and the sensors are equispaced with
half wavelength spacing. The number of sensors is m = 10
and the number of snapshot vectors is n = 100 for each
Monte Carlo trial. One thousand trials are used to cal-
culate the root mean squared error (RMSE) of �2. The
following algorithms are implemented in our simulations
for comparisons: RRPO with Weighting (RRPOW), Total
Least Square (TLS), MUSIC (MUSIC), Linear Constrained
RRPO (LCRRPO), Linear Constrained RRPO with Over-
�tting (LCRRPOO), Linear Constrained Total Least Square
(LCTLS), and Linear Constrained MUSIC (LCMUSIC).

4.1. RMSE versus SNR

In Figures 1, 2, 3, we plot the RMSE of �2 estimate versus
SNR for various levels of coherence, � = :999; :99; 0, respec-
tively. The following observations are obtained.
(a). The coherence between two sources has little e�ect
on the estimation performance of constrained RRPO meth-
ods. For incoherent sources, the estimation performance
of unconstrained RRRPO method approaches that of con-
strained RRPO method. This is also observed for the con-
strained TLS and MUSIC.
(b). When the SNR is beyond a certain threshold value (in
our case, for example, SNR > 0dB), the performance of
LCRRPOO is very close to that of LCTLS.

4.2. RMSE versus Source Separation

In Figures 4, 5, 6, we plot the RMSE of �2 estimate ver-
sus source separations for various levels of coherence, � =
:999; :99; 0, respectively. �1 = 90o, and �2 is varied from
�2 = 91o to �2 = 115o. The following observations are ob-
tained.
(a). As previously mentioned, the coherence between two
sources has little e�ect on the estimation performance of
constrained RRPO methods. For incoherent sources, the
estimation performance of unconstrained RRRPO method
approaches that of constrained RRPO method.
(b). When the SNR is beyond a certain threshold value
(in this test, for example, SNR=30 dB), the performance
of LCRRPOO is very close to that of LCTLS when source
separation is small (in this test, for example, �� < 17o),
and better than that of LCTLS and approaches that of
LCMUSIC when source separation is large ( in this test, for
example, �� > 17o).
(c). If sources are highly correlated or coherent (for exam-
ple � = :999 or :99), when source separation is larger than
a certain threshold (13o in our example), the performance
of RRPOW method is equivalent to that of LCRRPO, and
approaches that of LCTLS.

5. CONCLUSION

In this paper, the RRPO methods are extended to include
constraints involving known signal information. Simulation
results indicate that by incorporating known signal infor-
mation such as source direction angle, the estimation of
unknown source directions can be signi�cantly improved,
especially when the unknown source is weak, closely spaced
and highly coherent with the known source.
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Figure 1: RMSE versus SNR. � = :999.
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Figure 2: RMSE versus SNR. � = :99.
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Figure 3: RMSE versus SNR. � = 0.
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Figure 4: RMSE versus source separation. � = :999.
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Figure 5: RMSE versus source separation. � = :99.
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Figure 6: RMSE versus source separation. � = 0.


