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ABSTRACT

In this paper we present a finite dimensional iterative algorithm for
optimalmaximum a posteriori(MAP) state estimation of bilinear
systems. Bilinear models are appealing in their ability to represent
or approximate a broad class of nonlinear systems. We show that
several bilinear models previously considered in the literature are
special cases of the general bilinear model we propose. Our iter-
ative algorithm for state estimation is based on the Expectation–
Maximization (EM) algorithm and outperforms the widely used
Extended Kalman filter (EKF). Unlike the EKF, our algorithm is
an optimal (in the MAP sense) finite–dimensional solution to the
state sequence estimation problem for bilinear models.

1. INTRODUCTION

Bilinear models [12] are widely used to modelnonlinear processes
in signal processing and communication systems. Nonlinear sys-
tems to which bilinear models can be applied arise in channel
equalization [2], echo cancellation [1], nonlinear tracking [6], mul-
tiplicative disturbance tracking [11], and many other areas of engi-
neering, socioeconomics and biology [4]. Further details are given
in Section 2.

Due to the widespread use of bilinear models, there is strong mo-
tivation to develop estimation algorithms for the state of such sys-
tems given noisy observations. Unfortunately, the optimal filter for
reconstructing conditional mean estimates of the state of a partially
observed bilinear system is infinite dimensional. Thus practical
filtering algorithms for bilinear systems are necessarily subopti-
mal. For example, the extended Kalman filter (EKF) is an approx-
imate filter that linearizes around conditional mean state estimates
at each time instant.
Rather than attempting to compute approximations to the condi-
tional mean estimates, in this paper we adopt a different criterion
for state estimation – maximum a posteriori (MAP) state sequence
estimation. We present an iterative finite dimensional algorithm
for computing the optimal MAP state sequence estimate for a bi-
linear system. In particular, we use the Expectation Maximiza-
tion (EM) algorithm to compute the MAP state sequence estimate.
Note that EM is traditionally used for maximum likelihood pa-
rameter estimation; the novel idea here is to use EM for MAP state
sequence estimation.
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Fnaiech and Ljung’s paper [5] discusses methods for parameter
identification of bilinear systems. These methods are directly trans-
ferred from linear system identification methods, such as least squares
and recursive prediction error methods. A Conjugate Gradient
method for identification of bilinear systems is developed by Bose
and Chen in [3]. Uses of bilinear models are not restricted to sys-
tem identification. Hazarika, Tsoi and Sergejew use bilinear mod-
els to improve the modeling of EEG signals, analysis of which is
carried out via an artificial neural network [7]. Lewiset.al. use
Walsh functions to estimate the state of bilinear systems [10].

The signal model considered in this paper is based on a much
broader class of bilinear processes than in [5],[12] where the in-
put is a known deterministic sequence or white noise. We gen-
eralize [5],[12] by assuming the input signal to be an unknown
autoregressive (AR) process. We formulate the bilinear processes
in vector state-space form, allowing for the possibility of bilinear-
ity in the state and observation equations.

We call our EM algorithm the KSEM algorithm, as it is an expectation–
maximization (EM) algorithm that combines two Kalman smoothers.
Highlights of the KSEM include:

(i) Each iteration of the KSEM has a finite dimensional ana-
lytical solution. The solution is somewhat remarkable: it
involves the exact separation of the expectation and maxi-
mization steps, each carried out via a Kalman smoother (see
Section 3).

(ii) Proven convergence, based on convergence of the EM algo-
rithm (see [13] for proof), albeit to a local stationary point.
Most approximate nonlinear filtering methods are heuristic
with no convergence proof [7].

(iii) Application to more general models than have been previ-
ously considered in the literature [12],[5].

(iv) Simulations show that the KSEM algorithm outperforms
the extended Kalman filter (EKF), in its ability to estimate
single and multiple autoregressive (AR) processes (see Sec-
tion 4).

(v) Potential for online recursive implementation. (This will be
explored in future work [9])

2. BILINEAR SYSTEM MODELS

The generalT -point, discrete time, bilinear model we will con-
sider is

xk+1 = F (sk)xk +Dsk +wk (1)



sk+1 = Bsk + vk (2)

yk = H(sk)
0
xk + ek (3)

whereF (sk) is a matrix–valued function andH(sk) is a vector–
valued function, both linear insk . This system model is bilinear in
both state and observation equations.

Practical Examples:We relate (1)–(3) to models considered in [11]
and [7].

Example 1:The multiplicative disturbance model proposed in [11]
is a case of the above system model, for which

F (sk) =

2
664

s1k : : : s(p�1)k spk
1 : : : 0 0
...

. . .
...

...
0 : : : 1 0

3
775

B = Ip�p ; D = 0

wk = [w1k ; w2k ; : : : ; wpk ]
0

vk = [vk; 0; : : : ; 0]
0

Example 2:The bilinear processes considered by Hazarikaet.al.
to model EEG signals [7] are of the form

xk +

pX
i=1

aixk�i =

mX
i=1

rX
j=1

bijXk�ivk�j + vk (4)

This is another case of our general bilinear system model, for
which

sk = vk 8k

F (sk) =
�
A+ [rk�1 rk�2 : : : rk�r] �M

0
�

rk�i = [sk�i 0 : : : 0]0

M = fbijg

A =

2
664

�a1 : : : �ap�1 �ap
1 : : : 0 0
...

.. .
...

...
0 : : : 1 0

3
775

B = 0 ; D = [1 0 : : : 0]

�
2
e = 0 ; �2w = 0

Similarly, one can express several other bilinear models as special
cases of the general bilinear model of (1)-(3). For the purposes
of this paper,H(sk) = H (no observation process bilinearity)
andD = 0 (no linearsk term in thexk process). The KSEM
algorithm is derived according to these conditions on the system
matrices. Other algorithms follow from other models, which are
to be discussed in [9].

Aim: Let ST = [s1 : : : sT ] andYT = [y1 : : : yT ]. Given the
signal model (1)-(3), our objective is to compute the MAP state
sequence estimate

S
MAP
T = arg max

ST

f(ST ; YT ) : (5)

Heref(ST ; YT ) denotes the joint density of the state sequenceST
and observation sequenceYT .
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Figure 1: Structure of the KSEM algorithm

3. MAP ESTIMATION ALGORITHM

In this section we present an EM algorithm, called the KSEM, to
compute the MAP state sequence estimate defined in (5). Each it-
eration of the algorithm has the following intuitive interpretation:
It cross-couples two Kalman smoothers, one for the E-step which
estimatesfxkg and the other for the M-step which computes the
the MAPfskg state sequence estimate. If either thefxkg or fskg
sequences are known, the bilinear signal model (1)-(3) reduces to
a linear, Gaussian system, the optimal estimate of which is ob-
tained by a Kalman smoother. The remarkable result we present
here is that when both AR processes are unknown in the bilinear
system model, optimal MAP estimates ofsk can be achieved in
a clean, precise manner by cross-coupling two Kalman smoothers
(one for the E-step and the other for the M-step). The structure of
the KSEM algorithm is shown in Figure 1.

The EM algorithm described below obtainsSMAP
T by iteratively

generating new state sequence estimates such that the state se-
quence likelihoodf(ST ; YT ) monotonically increases until the
MAP sequenceSMAP

T is obtained. Given mild regularity con-
ditions, it can be proven [13] that the EM algorithm converges to a
local stationary point on the state sequence likelihoodf(ST ; YT ).
Details appear in [9].
KSEM Algorithm: For iterationsl = 1; 2; : : :

E step:Evaluate the conditional expectation of the log likelihood

Q(ST ; S
(l)
T )

4
= Efln f(ST ;XT ; YT )jYT ; S

(l)
T g (6)

to obtain estimates ofdxkx0k and dxkx0k�1.

M step:ComputeS(l+1)T :

S
(l+1)
T = argmax

ST

Q(ST ; S
(l)
T ) (7)

For the bilinear system model (1)-(3) these steps have compact
structures as a result of the Gaussian nature of the distributions.

Q(ST ; S
(l)
T ) = �

1

2

TX
k=1

(yk �Hxk)
0��1e (yk �Hxk)

�
1

2

TX
k=1

(sk �Bsk�1)
0��1v (sk �Bsk�1)



�
1

2

TX
k=1

(xk � F (sk�1)xk�1)
0��1w (xk � F (sk�1)xk�1) (8)

Computational Requirements: Each iteration of the KSEM al-
gorithm requiresO(p3T ) for a T -point data sequence,p being
the dimension ofsk . This is the cost associated with a Kalman
smoother.

3.1. Computing the E step

Estimates ofdxkx0k and dxkx0k�1 are required in the M step (see (19),
(20)). This latter term is of dimensionp+1, wherep is the dimen-
sion of thesk andxk vectors. Therefore, ignoring terms in (8)
independent ofxk and assuming knowledge of the sequenceS

(l)
T ,

Q(ST ; S
(l)
T ) is the density of a linear, Gaussian system, the state

sequencefxkg of which can be estimated via a Kalman smoother
on the augmented system equations�

xk+1

xk�p

�
=

�
F (s

(l)
k ) 0

01xp 1

� �
xk

xk�p�1

�

+

�
Ipxp 0
01xp 1

�
wk (9)

yk =
�
H 0

� � xk

xk�p�1

�
+ ek (10)

3.2. Computing the M step

We seek to maximizeQ(ST ; S
(l))
T ) to obtain an updated state se-

quence estimate,S(l+1)T . The surprising result is that this is achiev-
able by application of a Kalman smoother on a modified linear,
Gaussian system. The proof of this fact follows.

Theorem 1A recursive solution to the maximization

S
(l+1)
T = argmax

ST

Q(ST ; S
(l)
T ) (11)

can be achieved by applying a Kalman smoother to the linear,
Gaussian system

sk+1 = Bsk + vk (12)

~yk = ~Hsk + ek (13)

where

~H ~H 0 = G2(xx
0)
��cxx0 (14)

~y = ~H�0
G1(xkx

0
k�1)

�� dxkx0k�1

(15)

Remark: Theorem 1 states that the M-step, i.e. the maximization
of (7), can be explicitly carried out via a Kalman smoother. This
Kalman smoother operates on an averaged state space system (av-
eraged over the states of thêXT sequence).
Proof of Theorem 1:We aim to writeQ(ST ; S

(l)
T ) as a likeli-

hood function for the system (12)-(13). Firstly, when maximizing
Q(ST ; S

(l)
T ) of (8), all terms that are independent ofST can be ig-

nored, as they remain constant in the maximization procedure. As-
suming that�v = �2vI and�w = �2wI, expandingQ(ST ; S

(l)
T )

gives

Q(ST ; S
(l)
T ) =

� 1
2�2v

TP
k=1

[s0ksk � 2s0kBsk�1 + s
0
k�1B

0Bsk�1]

+x0k�1F (sk�1)
0F (sk�1)xk�1]

+ terms independent ofST (16)

AsF (sk) is linear insk, rewritingF (sk)xk in terms of a function
of xk gives

F (sk)xk
4
= G(xk)sk: (17)

�2x0kF (sk�1)xk�1
4
= �2x0kG(xk�1)sk�1 (18)

Estimates of dx0kxk�1 are available from the augmented Kalman
smoother output of the E-step. Make the substitution:

�2x0kG(xk�1)sk�1 = �2G1(xkx
0
k�1)

�� dxkx0k�1

sk�1 (19)

As G(xk) is linear,G(xk)0G(xk) is quadratic. Estimates ofcxx0
are also a product of the Kalman smoother in the E-step, hence
make a further substitution:

G(xk)
0
G(xk) = G2(xx

0)
��cxx0 (20)

By making these substitutions in (16) and further removing terms
independent ofST , one can complete the square to obtain:

Q(ST ; S
(l)
T ) = � 1

2�2
v

TP
k=1

(sk �Bsk�1)
0(sk �Bsk�1)

� 1
2

TP
k=1

(~y � ~Hsk)
0(~y� ~Hsk)

+ terms independent ofST (21)

The signal model (12)–(13) follows directly from the expression
for Q(ST ; S

(l)
T ) in (21).

Due to the Gaussianity and independence ofvk, ek ands0, the
following expression for the joint density ofST and ~YT is easily
derived:

ln f(ST ; ~YT ) = Q(ST ; S
(l)
T ) + [terms independent ofsk] (22)

whereQ(ST ; S
(l)
T ) is defined in (21). The MAP estimate of any

linear Gaussian system e.g. (12) and (13), is known to be given by
a fixed-interval Kalman smoother [8]. That is,

(s1jT ; : : : ; sT jT ) = argmax
ST

f(ST ; ~YT ): (23)

From (22),

argmax
ST

f(ST ; ~YT ) = arg max
ST

Q(ST ; S
(l)
T ): (24)

This is precisely the quantity that the EM algorithm computes.

S
(l+1)
T = argmax

ST

Q(ST ; S
(l)
T ) (25)

It follows then that maximizingQ(ST ; S
(l)
T ) is equivalent to ap-

plying a Kalman smoother to the linear Gaussian model in (12)
and (13).2
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Figure 2: Scatterplots of truesk sequence vs estimatedsk se-
quence for KSEM and EKF

4. SIMULATIONS

The bilinear system model of Section 2 is unstable for some pa-
rameter and sequence values. Thesk process cannot be too large,
as it drives the time-varying coefficients of thexk process. Over
the noise variance ranges for which the bilinear system is stable,
the KSEM algorithm outperforms the EKF. While both algorithms
estimate thexk states well, the EKF fails to estimate thesk states
with the same degree of accuracy as the KSEM.

Consider the particular system with observation noise variance
�2e = 1, x state noise variance�2w = 1, ands state noise variance
�2v = 0:5. The KSEM algorithm is iterated10 times. Figure 2
shows plots oftrue fskg vs estimatedfskg for the KSEM and
EKF algorithms. Ideally the plot should be a linear relationship
as shown by the broken line. The cloud obtained from the KSEM
algorithm is more accurate than that obtained from the EKF. These
plots are typical of algorithm performance.

To compare performance over a range of noise values, Figure 3
shows how the proportional Mean Square Error varies againstsk

process noise variance,�2v. Both�2e and�2w = 1 and the dimen-
sion ofsk is 2,

B =

�
0:2 0
0 0:8

�
; F (sk) =

�
s1k 0
0 s2k

�
(26)

and the KSEM algorithm is iterated10 times.

The proportional Mean Square Error (MSE) metric we use is

proportional MSE=

TP
k=1

(sk � ŝk)
2

TP
k=1

s2k

: (27)

Dividing by the signal power ensures that the MSE of thexk pro-
cess is a proportion of its size, not an absolute measure. Fig-
ure 3 clearly shows the superiority of the KSEM algorithm over
the EKF. Values around 1 indicate that signal estimate errors oc-
cur with the same power as the original signal. While not evi-
dent in this plot alone, the KSEM can estimate multiplefskg se-
quences, while the EKF only estimates one with any degree of
success. Such facts will be explored further in future work [9].
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Figure 3: Proportional Mean Square Error of KSEM and EKF
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