A NEW MAXIMUM LIKELIHOOD GRADIENT ALGORITHM FOR ON-LINE HIDDEN
MARKOV MODEL IDENTIFICATION

lain B. Collings

Dept. of Elec. & Electr. Engineering,
University of Melbourne, Australia

ABSTRACT

This paper presents a new algorithm for on-line identifi-
cation of hidden Markov model (HMM) parameters. The
scheme is gradient based, and provides parameter estimates
which recursively maximise the likelihood function. It is
thereforearecursive maximum likelihood (RML) agorithm,
and it has optimal asymptotic properties. The only current
on-line HMM identification a gorithm with anything other
than suboptimal rate of convergence is based on a predic-
tion error (PE) cost function. Aswell as presenting a new
algorithm, this paper a so highlightsand explains a counter-
intuitive convergence problem for the current recursive PE
(RPE) algorithm, when operating in low noise conditions.
Importantly, this problem does not exist for the new RML
algorithm. Simulation studies demonstrate the superior per-
formance of the new agorithm, compared to current tech-
niques.

1. INTRODUCTION

Recently, hidden Markov models(HMMs) have been usedin
awide variety of applications, including speech processing
[8], frequency tracking [10] and signal estimation in mobile
communication systems [2]. In each of these areas, the
related tasks of state estimation for known models and on-
line model identification are of critical importance.

On-lineidentification algorithmsare usually based on either
recursive maximum likelihood (RML) or recursive predic-
tion error (RPE) techniques. In the context of HMMs, two
dightly different RML schemes are proposed in [5] and [6],
and an RPE scheme isgivenin [1]. The difference between
the RML schemes essentially concerns the scaling matrix
that pre-multipliesthe gradient of the log-likelihood; in [6]
this matrix is derived using ideas of the EM (expectation-
maximization) algorithm, whileadifferent approachistaken
in [5]. This difference is not unimportant, however, as the
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scaling matrix, together with the asymptotic covariance ma-
trix of the log-likelihood gradient, determine the rate of
convergence inthevicinity of thetrue parameter, see[4] and
[9]. The fastest achievable rateis n~!/2, with n being the
number of observations. The algorithmin [6] does not gen-
erally achieve thisrate. The agorithmin [5] does, but it is
less efficient than the maximum likelihood estimate (MLE),
sincethegradient used inthe a gorithm actually differsfrom
the gradient of the log-likelihood.

The RPE scheme [1] as well as the new RML scheme pro-
posed in thispaper bothincorporate scaling matricesthat are
(estimated) inverse covariance matrices of the gradient of
the objective function. This makes both algorithms achieve
the optimal rate of convergence, although the asymptotic
covariance matrix of the RPE agorithm is suboptimal. Ad-
ditionaly, and rather counter-intuitively, local convergence
problems arise for the RPE agorithm in low noise condi-
tions.

In this paper we do two things: highlight, and provide an
explanation for, the failure of the RPE algorithm in low
noise, and also present new RML agorithms to overcome
the problem without sacrificing convergence rates. Sim-
ulation examples show that our new RML agorithm can
satisfactorily identify HMM parameters, even in conditions
where the RPE scheme becomes caught in local minima

The genera approach to estimation/identificationin this pa-
perissimilar tothat in[1], wheretheHMM isformulatedin
such away as to alow gradient algorithmsto be applied. In
the case of timevarying models, the RPE and RML schemes
can be replaced by versions of the extended Kalman filter,
in order to generate fully adaptive estimation/identification
schemes. The parameters of interest are the state values and
transition probabilities of the Markov chain. In this paper
the transition probabilities are parametrised on a sphere so
as to ensure that the derivatives are smooth, and that the
estimates remain positive.

The paper is organised as follows. Sections 2 and 3 for-
mulate the HMM and information-state models. Section 4
presentsour new RML agorithm, working on the spherefor



theconstrained transition probability estimates. 1n Section 6
simulation examples are given.

2. PROBLEM FORMULATION

2.1. State space signal model

Let { X}, } beadiscrete-time, homogeneous, first order Markov
chain taking values in a set with N elements. Without
loss of generality, we can be identify these N elements
with the set of unit vectors {ey,es,...,en}, Wheree; =
(0,...,0,1,0,...,0) € IRY with 1 in the i*" position.
(The prime denotes transpose.) It is well known that the
dynamics of { X}, } can bewritten asfollows[3]:

Xpy1 = A Xy + My, 1

where A isthe N x N transition probability matrix with
elements aj; = P(X;H_l = €; | Xy = 62'), and M isa
martingaleincrement. Of coursea;; > 0 and Z;V:l a;; =1
for each i.

Also, consider the observation process
Yi = g(Xx) + Wh, 2

where without loss of generality ¢(Xx) = (g, X&), sSince
X isin afinite set (where (., .) denotes the inner prod-
uct), and ¢ € IRY is the vector of state vaues of the
Markov chain. In this paper we consider that 1 is a
white (or more precisaly, independent and identically dis-
tributed) Gaussian noise (WGN) process, with zero mean
and standard deviation o,. Let b;(y) be the probability
density function of Y; conditional on X; = ¢, and write
b(y) = (bi(y),...,bn(y))’. Thus, inour setting,

a2 ) o

2.2. Mode parametrisation

bi(y) =

We are concerned with recursiveidentification of the param-
gersg and A; weassume o, tobeknown. Itisclear that the
set of valid rowsin atransition probability matrix constitute
a simplex. There is, however, an aternative parametrisa-
tion, on a sphere, that is superior to the one on asimplex, as
observed in [1]. Specifically, let a;; = sfj. Each row inthe
corresponding matrix .S bel ongsto the manifold

N
SN_lz{(l‘l’,,,’@‘N):Zl‘?zl}. (4)
i=1
The parameter of interest can then be written

9:(gla"'agNaslla'"aslNa521a"'a5NN)/~ (5)

Clearly, both A and b(y) depend on this parameter, that
isA = A(f) and b(y) = b(y;6). The dimension of § is
N + N2, representing N state values and N2 transition
probabilities. The important aspect of the work in this pa-
per is that the identification scheme involves decoupling
which greatly reduces the computational complexity. In
cases where the parameter ¢ isnot asin (5), the framework
described below can still be used, with appropriate changes
to the gradient expressions which follow.

3. PARAMETRISED INFORMATION-STATE
SIGNAL MODEL

Let theinformation-state, o, (#), bethevector of conditional
probabilities Py (X = ¢ | Y1,...,Ys) under 8, defined as
follows:

Ozk(g)IEg[Xk |Y1,...,Yk]. (6)
This vector may be recursively updated using the following
equation:

B(Yi; 0)A'(0)ak—1(0)

(B(Yi; ) A (0)ag—1(6),1)

Ozk(g) = IG(Ozk_l(g),Yk;g)

(7)
where B(y; #) = diag(b(y; ¢)) isthe diagona matrix with
entriesgiven by b(y; #), and 1 isan NV x 1 vector of ones.

Notethat from now on, wewill drop the obviousdependence
of thevariableson 4, for ease of notation.

For the algorithmswhich follow, we al so require the derive
tive of theinformation-stateupdate equation. Let 1, (¢; 0) =
Dy, (0) and px (7, 4;0) = Ds,;ax(0), where D denotes
differentiation. These derivatives may be recursively up-
dated as follows:

[Dg. B(Y)|A a1 + B(Vi) A'nx—-1(7)
<1, B(Yk)A/Ozk_1>

me(i) =

(1,[Dg, B(Ys)]A -1 + B(Ye)A'ms—1(3))

_B(Yk)A/Ozk_l <1,B(Yk)A/Ozk_1>2

= Gi(ap_1,mr-1(i), Yi;0) , (8)
where
Yi — g .
Dy, B(Ye;0) = ( kgz . )B(Yk;g) diag(e:) ,  (9)
and
.. B(Yk)[Dssz/]ak—l+B(Yk)A/pk_1(i’j)
pe(i,j) =

<1, B(Yk)A/Ozk_1>

Sijf

—B(Yk)A/Ozk_l

(1, B(Y3)[Ds,; Alar—1+ B(Yi) A pr—1(3, J))

<1, B(Yk)A/Ozk_1>2

= ng(ak—lapk—l(iaj)ayk;g) )
(10)



with
Dy, A'(0) = 2s;5(e; — diag(s;.)s )e; (1)
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Also, s;. = (si1, ..., sin), and it should be pointed out that
the derivatives are taken in the direction perpendicular to the
constraint surface (4).

Now, by collecting the elements of 7, () and px(6) into
one column vector ¢y, () = vec(nx(8), px (7)) weobtainthe
recursive update

Hog-a k—1(0), Yi; 0
Ck(g) = vec( 1((0% 1(( )) Zk 1((9)) Yi: 9)) )

= GMoag-1(0),Ch—1(0), Yi;0) . (12)

4. THE NEW RML ALGORITHM

The log-likelihood £, (6) = log p(Y1, ..., Y,;6) can bere-
written as
6 (0) =50 logp(Ye | Yi—1,...,Y1;0)

=2 k=1 log(b(Ys; 0), A'(O)ork—1(6)) = 3-5—, uk(0)
(13)

where uy (6) denotes alog-likelihood increment. Thus, the
conditional score function Dyuy (6) (not given here due
to space limitations) can be written in terms of 7, pg,
D, b(Yx; #) and D, A’ (), givenin (8) to (11).
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We can now construct our new RML agorithm as follows:
0 = mp (@;-1 + Pkl/)k) ; (14)

whererp isaprojection onto theconstraint domain, 1 +1 =
VEC(Dgluk(g), Ds”uk( )) and
P = >\ (Pi—1 4 Py1¥u[vn Pec1vn + Ae] ™10, Peoi)
ag = G(ak—l,Yk,gk), R
Ck = Gl(ak—l,Ck—l,Yk;gk) ,

(15)

5. FAILURE OF THE RPE IN LOW NOISE

Asdiscussed in Section 1, theaim of thispaper istwofold: to
present a new RML agorithm for on-line HMM identifica-
tion, and to highlight arather counter-intuitive convergence
problem with the current RPE approach when operating in
low noise conditions. Importantly, the problem does not
occur with our new RML agorithm. This section provides
an explanation for the phenomenon.

The RPE on-lineidentification algorithm, of [1], minimises
the square of the prediction error. Ihe prediction at time &
given the past, Y, isafunctionof 8;_; and a1 (whichis

itself a function of ak_l). It can clearly be seen that if the
derivative of ay_; with respect to ¢ is zero, then the best
that can be hoped for from any RPE algorithmisan estimate
of the product ¢’ A’, rather than ¢ and A separately (due to
thefact that in thiscase ¢ and A only effect the cost function
through the product ¢’ A’ and not through «. Note that
(g9, A'a) can be written ¢’ A’ v in this case). Unfortunately,
of course, there are many combinations of ¢ and A which
will lead to the same product ¢’ A’. This leads to many
globa minima for the prediction error cost function. With
thisin mind, it can be seen from (8) and (10) that in low
noise conditions, the derivative of «, with respect to ¢ isin
fact amost zero leading problems with the RPE approach.
(Notethat thetermslow noise conditionsand small noiseare
used toindicatethesituationwhere o, < mini-; |g; —g;|.)

Importantly, this problem of many globa minima of the
prediction error cost function does not occur in the case of
the maximum likelihood cost function, upon which our new
RML agorithmisbased. Thisisbecauseimportantly, unlike
RPE, even inthe low noise case ¢ and A effect the ML cost
function separately (that is, not as the product ¢’ A”), as can
be seenin (13).

6. SSIMULATIONS

Example 1: A two state Markov chain embedded in WGN
has been generated with diagona transition probabilities
of 0.9, and state levels 0 and 1. Also, o, = 0.1. The
initia diagonal transition probability estimateswere 0.1, and
inita state levels 0.3 and 0.7. Figures 1 and 2 show typical
parameter estimates for this data. The figures demonstrate
that the estimates convergeto thetrueva uesonly for the new
RML agorithm. The RPE algorithm has clearly converged
to some other value. Thisvalue turnsout to be such that the
product ¢’ A’ is correct, as was demonstrated previously.

Example 2: This example confirms that the rate of con-
vergence of model estimates has not been sacrificed for our
new RML agorithm, when compared to the RPE a gorithm,
for cases when the RPE algorithm actually converges to
the true values (i.e. in high noise cases). This is impor-
tant because it demonstrates that the RML agorithm has
n~'/2-convergence. This means that RML is superiour to
the previous agorithm in [6], in terms of convergence, as
well as being superiour to the RPE agorithm which has
problemsin low noise conditions.

The model parameters are the same asin Example 1, except
thato,, = 0.3. TheresultsareshowninFigures3and4. The
error function used on the vertical axesis (1/k) Zle |6; —
g].



Figure1: Level estimates of 2 state Markov chain

Figure2: Transition probability estimates of 2 state Markov

chain

State value

Transition probability

——RPE estimate
0.4- — - - RML estimate

2 3
Time k (x 1000)

ow = 0.1, Truevaduesare0and 1

o
o

o
o2}

o
£

——RPE estimate

- - - RML estimate

o
[N}

2 3
Time k (x 1000)

ow = 0.1, Truevaueis0.9

0
10

Level Estimates

——RPE estimate
- - - RML estimate

-2
10

0 1
10 10 Time k

o = 0.3 (both agorithms converge)

Figure 3: Error function for level estimates

0
10

Transition Probability Estimates

——RPE estimate
- - - RML estimate

0 ‘ 1 2
10 10 Time K 10

o = 0.3 (both agorithms converge)

Figure 4: Error function for transition probability estimates

[1]

(2]

(3]

[4]

(5]

(6]

(8]

[9]

[10]

7. REFERENCES

I.B. Collings, V. Krishnamurthy, and J. B. Moore, “On-
lineidentification of hidden Markov models viarecur-
sive prediction error techniques’, |EEE Trans. Signal
Process., vol. 42, pp. 3535-3539, 1994.

I. B. Collingsand J. B. Moore, “An HMM approach
to adaptive demodulation of QAM signals in fading
channdls,” Int. J. Adapt. Control Sgnal Process., vol. 8,
pp. 457474, 1994.

R. J. Elliott, “ Exact adaptive filters for Markov chains
observed in Gaussian noise” Automatica, vol. 30,
no. 9, 1976.

V. Fabian, “On asymptotic normality in stochastic ap-
proximation,” Ann. Math. Sati<t., vol. 39, pp. 1327-
1332, 1968.

U. Holst and G. Lindgren, “Recursive estimation in
mixture models with Markov regime” IEEE Trans.
Inform. Theory, vol. 37, pp. 1683—-1690, 1991.

V. Krishnamurthy and J. B. Moore, “On-line estima-
tion of hidden Markov model parameters based on the
Kullback-Leibler information measure,” 1EEE Trans.
Sgnal Process,, val. 41, pp. 2557-2573, 1993.

L. Ljung and T. Soderstrom, Theory and Practice of
Recursive ldentification. Cambridge, MA: MIT Press,
1983.

L. R. Rabiner, “A tutorial on hidden Markov models
and sel ected applicationsin speech recognition,” Proc.
|EEE, vol. 77, pp. 257-285, 19809.

D. Ruppert, “Almost sure approximations to the
Robbins-Monro and Kiefer-Wolfowitz processes with
dependent noise” Ann. Prob., vol. 10, pp. 178-187,
1982.

R. L. Streit and R. Barrett, “Frequency line tracking
using hidden Markov models,” |EEE Trans. Acoust.
Speech Signal Process,, vol. 38, pp. 586-598, 1990.



