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ABSTRACT

This paper presents a new algorithm for on-line identifi-
cation of hidden Markov model (HMM) parameters. The
scheme is gradient based, and provides parameter estimates
which recursively maximise the likelihood function. It is
therefore a recursive maximum likelihood(RML) algorithm,
and it has optimal asymptotic properties. The only current
on-line HMM identification algorithm with anything other
than suboptimal rate of convergence is based on a predic-
tion error (PE) cost function. As well as presenting a new
algorithm, this paper also highlights and explains a counter-
intuitive convergence problem for the current recursive PE
(RPE) algorithm, when operating in low noise conditions.
Importantly, this problem does not exist for the new RML
algorithm. Simulation studies demonstrate the superior per-
formance of the new algorithm, compared to current tech-
niques.

1. INTRODUCTION

Recently, hidden Markov models (HMMs) have been used in
a wide variety of applications, including speech processing
[8], frequency tracking [10] and signal estimation in mobile
communication systems [2]. In each of these areas, the
related tasks of state estimation for known models and on-
line model identification are of critical importance.

On-line identification algorithms are usually based on either
recursive maximum likelihood (RML) or recursive predic-
tion error (RPE) techniques. In the context of HMMs, two
slightly different RML schemes are proposed in [5] and [6],
and an RPE scheme is given in [1]. The difference between
the RML schemes essentially concerns the scaling matrix
that pre-multiplies the gradient of the log-likelihood; in [6]
this matrix is derived using ideas of the EM (expectation-
maximization) algorithm, while a different approach is taken
in [5]. This difference is not unimportant, however, as the
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scaling matrix, together with the asymptotic covariance ma-
trix of the log-likelihood gradient, determine the rate of
convergence in the vicinity of the true parameter, see [4] and
[9]. The fastest achievable rate is n�1=2, with n being the
number of observations. The algorithm in [6] does not gen-
erally achieve this rate. The algorithm in [5] does, but it is
less efficient than the maximum likelihood estimate (MLE),
since the gradient used in the algorithm actually differs from
the gradient of the log-likelihood.

The RPE scheme [1] as well as the new RML scheme pro-
posed in this paper both incorporate scaling matrices that are
(estimated) inverse covariance matrices of the gradient of
the objective function. This makes both algorithms achieve
the optimal rate of convergence, although the asymptotic
covariance matrix of the RPE algorithm is suboptimal. Ad-
ditionally, and rather counter-intuitively, local convergence
problems arise for the RPE algorithm in low noise condi-
tions.

In this paper we do two things: highlight, and provide an
explanation for, the failure of the RPE algorithm in low
noise, and also present new RML algorithms to overcome
the problem without sacrificing convergence rates. Sim-
ulation examples show that our new RML algorithm can
satisfactorily identify HMM parameters, even in conditions
where the RPE scheme becomes caught in local minima.

The general approach to estimation/identification in this pa-
per is similar to that in [1], where the HMM is formulated in
such a way as to allow gradient algorithms to be applied. In
the case of time varying models, the RPE and RML schemes
can be replaced by versions of the extended Kalman filter,
in order to generate fully adaptive estimation/identification
schemes. The parameters of interest are the state values and
transition probabilities of the Markov chain. In this paper
the transition probabilities are parametrised on a sphere so
as to ensure that the derivatives are smooth, and that the
estimates remain positive.

The paper is organised as follows. Sections 2 and 3 for-
mulate the HMM and information-state models. Section 4
presents our new RML algorithm, working on the sphere for



the constrained transitionprobabilityestimates. In Section 6
simulation examples are given.

2. PROBLEM FORMULATION

2.1. State space signal model

Let fXkgbe a discrete-time, homogeneous, first order Markov
chain taking values in a set with N elements. Without
loss of generality, we can be identify these N elements
with the set of unit vectors fe1; e2; : : : ; eNg, where ei =
(0; : : : ; 0; 1; 0; : : :; 0)0 2 IRN with 1 in the ith position.
(The prime denotes transpose.) It is well known that the
dynamics of fXkg can be written as follows [3]:

Xk+1 = A0Xk +Mk+1; (1)

where A is the N � N transition probability matrix with
elements aij = P (Xk+1 = ej j Xk = ei), and Mk is a
martingale increment. Of course aij � 0 and

PN
j=1 aij = 1

for each i.

Also, consider the observation process

Yk = g(Xk) +Wk; (2)

where without loss of generality g(Xk) = hg;Xki, since
Xk is in a finite set (where h:; :i denotes the inner prod-
uct), and g 2 IRN is the vector of state values of the
Markov chain. In this paper we consider that Wk is a
white (or more precisely, independent and identically dis-
tributed) Gaussian noise (WGN) process, with zero mean
and standard deviation �w. Let bi(y) be the probability
density function of Yk conditional on Xk = i, and write
b(y) = (b1(y); : : : ; bN (y))0. Thus, in our setting,

bi(y) =
1p
2��2w

exp

(
�
1

2

�
y � gi
�w

�2)
: (3)

2.2. Model parametrisation

We are concerned with recursive identification of the param-
eters g andA; we assume �w to be known. It is clear that the
set of valid rows in a transition probability matrix constitute
a simplex. There is, however, an alternative parametrisa-
tion, on a sphere, that is superior to the one on a simplex, as
observed in [1]. Specifically, let aij = s2ij . Each row in the
corresponding matrix S belongs to the manifold

S
N�1 =

(
(x1; : : : ; xN ) :

NX
i=1

x2i = 1

)
: (4)

The parameter of interest can then be written

� = (g1; : : : ; gN ; s11; : : : ; s1N ; s21; : : : ; sNN )0: (5)

Clearly, both A and b(y) depend on this parameter, that
is A = A(�) and b(y) = b(y; �). The dimension of � is
N + N2, representing N state values and N2 transition
probabilities. The important aspect of the work in this pa-
per is that the identification scheme involves decoupling
which greatly reduces the computational complexity. In
cases where the parameter � is not as in (5), the framework
described below can still be used, with appropriate changes
to the gradient expressions which follow.

3. PARAMETRISED INFORMATION-STATE
SIGNAL MODEL

Let the information-state,�k(�), be the vector of conditional
probabilities P�(Xk = i j Y1; : : : ; Yk) under �, defined as
follows:

�k(�) = E�[Xk j Y1; : : : ; Yk] : (6)

This vector may be recursively updated using the following
equation:

�k(�) =
B(Yk; �)A0(�)�k�1(�)

hB(Yk; �)A0(�)�k�1(�);1i
= G(�k�1(�); Yk; �) ;

(7)
where B(y; �) = diag(b(y; �)) is the diagonal matrix with
entries given by b(y; �), and 1 is an N � 1 vector of ones.

Note that from now on, we will drop the obvious dependence
of the variables on �, for ease of notation.

For the algorithms which follow, we also require the deriva-
tive of the information-state update equation. Let �k(i; �) =
Dgi�k(�) and �k(i; j; �) = Dsij�k(�), where D denotes
differentiation. These derivatives may be recursively up-
dated as follows:

�k(i) =
[DgiB(Yk)]A0�k�1+ B(Yk)A0�k�1(i)

h1; B(Yk)A0�k�1i

�B(Yk)A
0�k�1

h1; [DgiB(Yk)]A0�k�1 +B(Yk)A0�k�1(i)i

h1; B(Yk)A0�k�1i2

= G1
i (�k�1; �k�1(i); Yk; �) ; (8)

where

DgiB(Yk ; �) =

�
Yk � gi
�2w

�
B(Yk; �) diag(ei) ; (9)

and

�k(i; j) =
B(Yk)[DsijA

0]�k�1+B(Yk)A
0�k�1(i; j)

h1; B(Yk)A0�k�1i

�B(Yk)A
0�k�1

h1; B(Yk)[DsijA
0]�k�1+ B(Yk)A0�k�1(i; j)i

h1; B(Yk)A0�k�1i2

= G1
ij(�k�1; �k�1(i; j); Yk; �) ;

(10)



with
DsijA

0(�) = 2sij(ej � diag(si�)s0i�)e
0
i : (11)

Also, si� = (si1; : : : ; siN ), and it should be pointed out that
the derivatives are taken in the direction perpendicular to the
constraint surface (4).

Now, by collecting the elements of �k(�) and �k(�) into
one column vector �k(�) = vec(�k(�); �k(�)) we obtain the
recursive update

�k(�) = vec
�

G1
i (�k�1(�); �k�1(�); Yk; �)

G1
ij(�k�1(�); �k�1(�); Yk; �)

�
= G1(�k�1(�); �k�1(�); Yk; �) : (12)

4. THE NEW RML ALGORITHM

The log-likelihood `n(�) = log p(Y1; : : : ; Yn; �) can be re-
written as

`n(�) =
Pn

k=1 log p(Yk j Yk�1; : : : ; Y1; �)
=
Pn

k=1 loghb(Yk; �); A
0(�)�k�1(�)i =

Pn
k=1 uk(�)

(13)
where uk(�) denotes a log-likelihood increment. Thus, the
conditional score function D�uk(�) (not given here due
to space limitations) can be written in terms of �k, �k,
Dgib(Yk; �) and DsijA

0(�), given in (8) to (11).

We can now construct our new RML algorithm as follows:

b�k = �D

�b�k�1 + Pk k

�
; (14)

where�D is a projection onto the constraint domain, k+1 =
vec(Dgiuk(�) ; Dsijuk(�)) and

Pk = 1

�k

�
Pk�1 + Pk�1 k[ kPk�1 k + �k]�1 0kPk�1

�
�k = G(�k�1; Yk; b�k);
�k = G1(�k�1; �k�1; Yk; b�k) ;

(15)

5. FAILURE OF THE RPE IN LOW NOISE

As discussed in Section 1, the aim of this paper is twofold: to
present a new RML algorithm for on-line HMM identifica-
tion, and to highlight a rather counter-intuitive convergence
problem with the current RPE approach when operating in
low noise conditions. Importantly, the problem does not
occur with our new RML algorithm. This section provides
an explanation for the phenomenon.

The RPE on-line identification algorithm, of [1], minimises
the square of the prediction error. The prediction at time k
given the past, bYk, is a function of b�k�1 and �k�1 (which is

itself a function of b�k�1). It can clearly be seen that if the
derivative of �k�1 with respect to � is zero, then the best
that can be hoped for from any RPE algorithm is an estimate
of the product g0A0, rather than g and A separately (due to
the fact that in this case g andA only effect the cost function
through the product g0A0 and not through �. Note that
hg;A0�i can be written g0A0� in this case). Unfortunately,
of course, there are many combinations of g and A which
will lead to the same product g0A0. This leads to many
global minima for the prediction error cost function. With
this in mind, it can be seen from (8) and (10) that in low
noise conditions, the derivative of �k with respect to � is in
fact almost zero leading problems with the RPE approach.
(Note that the terms low noise conditionsand small noise are
used to indicate the situation where �w � mini6=j jgi�gjj.)

Importantly, this problem of many global minima of the
prediction error cost function does not occur in the case of
the maximum likelihood cost function, upon which our new
RML algorithmis based. This is because importantly, unlike
RPE, even in the low noise case g and A effect the ML cost
function separately (that is, not as the product g0A0), as can
be seen in (13).

6. SIMULATIONS

Example 1: A two state Markov chain embedded in WGN
has been generated with diagonal transition probabilities
of 0.9, and state levels 0 and 1. Also, �w = 0:1. The
initial diagonal transitionprobabilityestimates were 0.1, and
inital state levels 0.3 and 0.7. Figures 1 and 2 show typical
parameter estimates for this data. The figures demonstrate
that the estimates converge to the true values only for the new
RML algorithm. The RPE algorithm has clearly converged
to some other value. This value turns out to be such that the
product g0A0 is correct, as was demonstrated previously.

Example 2: This example confirms that the rate of con-
vergence of model estimates has not been sacrificed for our
new RML algorithm, when compared to the RPE algorithm,
for cases when the RPE algorithm actually converges to
the true values (i.e. in high noise cases). This is impor-
tant because it demonstrates that the RML algorithm has
n�1=2-convergence. This means that RML is superiour to
the previous algorithm in [6], in terms of convergence, as
well as being superiour to the RPE algorithm which has
problems in low noise conditions.

The model parameters are the same as in Example 1, except
that�w = 0:3. The results are shown in Figures 3 and 4. The
error function used on the vertical axes is (1=k)

Pk
i=1 j

b�i �
�j.
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Figure 1: Level estimates of 2 state Markov chain

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Time  k (x 1000)

T
ra

ns
iti

on
 p

ro
ba

bi
lit

y

_____RPE estimate

− − −  RML estimate

�w = 0:1, True value is 0.9

Figure 2: Transition probability estimates of 2 state Markov
chain
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Figure 3: Error function for level estimates
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Figure 4: Error function for transition probability estimates
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