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ABSTRACT

This paper investigates a new method for creating
speaker models robust against utterance variation in contin-
uous distribution hidden-Markov-model-based speaker ver-
i�cation. In this method, the distribution of the session-
independent features for each speaker is estimated by sep-
arately modeling the session-to-session utterance variation
as two distinct variations: one session-dependent and the
other session-independent. In practice, joint normaliza-
tion of the session-dependent utterance variation and es-
timation of the parameters of speaker models is performed
based on a speaker adaptive training algorithm. The re-
sulting speaker models more accurately represent session-
independent speaker characteristics, and the discriminatory
capabilities of these models increases. In text-independent
speaker veri�cation experiments using data uttered by 20
speakers in 7 sessions over 16 months, we show that the pro-
posed method achieves a 15% reduction in the error rate.

1. INTRODUCTION

Speaker veri�cation systems are supposed to be used to
judge the identities of individual speakers many times over
a long period. In practical systems, a serious problem is
the burden placed on each speaker to produce speech data,
and as a result, speech data is often collected over several
sessions and the amount of data collected in each session
is usually small. In one session, a series of utterances is
continuously recorded within a limited time, i.e., dozens of
minutes. Although initial speaker models are created using
such a small amount of data, the models are not robust
against session-to-session utterance variation. The reason
why this is such a di�cult problem lies in the fact that
the utterance variation is session-dependent and irregular.
Generally, a large amount of data for each speaker would be
saved over multiple sessions and the speaker model recre-
ated using this large data set containing utterance varia-
tion. However, the spectral distributions of the large data
set often exhibit a high degree of variance and the model
represents fuzzy speaker characteristics. This may reduce
the discriminatory capabilities of speaker models. Setlur et
al. [1] reported a method of recreating the speaker model
allowing for increased model complexity to better capture
utterance variation. While such methods would be e�ective,

it would be quite di�cult to eliminate the e�ects of irreg-
ular utterance variation and determine the proper model
complexity.

This paper investigates a method of creating speaker
models robust against utterance variation that represents
session-independent speaker characteristics more accurately
by using the �xed-model complexity in continuous distribu-
tion hidden Markov model (HMM)-based speaker veri�ca-
tion. Here, we assumed that session-to-session utterance-
variation comprises two distinct variations: one being
session-dependent caused by voice changes with time and
by the di�erence in texts among sessions especially in text-
independent systems, and the other is session-independent
factors. Conceptually, this method attempts to remove
session-dependent utterance variation rather than capture
it. In this method, session-to-session utterance variation
is modeled, and joint normalization of session-dependent
utterance variation and the speaker model parameters are
estimated based on the speaker adaptive training (SAT)
algorithm [2][3][4]. This algorithm was originally devel-
oped for speaker adaptation in speech recognition and its
development was motivated by the fact that variability in
speaker-independent (SI) phoneme models is attributed to
both phonetic variation and inter-speaker variation. The al-
gorithm performs joint normalization of inter-speaker vari-
ation and estimation of the parameters of the SI models,
leading to true SI models with reduced cross-unit overlap.
The algorithm can be applied to our problem by replac-
ing SI phoneme models and inter-speaker variation with
speaker models and session-dependent utterance variation.
We term the resulting speaker models as compact speaker
models following the manner of [2].

In speaker veri�cation, the likelihood normalization
technique is essential in order to set stable thresholds for
veri�cation decision since the likelihood value covers a wide
range of di�erent texts spoken at di�erent times, even by
the same speaker. We previously reported the likelihood
normalization method based on a posteriori probability [5].
In the normalization method, a likelihood value of a single
phoneme- and speaker-independent pooled model, which is
formed by pooling the features of all registered speakers,
is used to normalize likelihood values of speaker models.
This paper also investigates a method of creating a com-
pact pooled model for compact speaker models.



2. COMPACT SPEAKER MODEL CREATION

In general, the speech data uttered by a speaker is assumed
to be the sample that is drawn from a probability density
function. Here, the speech data set uttered by a speaker in
di�erent sessions is assumed to be the sample set with dif-
ferent probability density functions corresponding to each
session but have common session-independent speaker char-
acteristics. According to this assumption, in our method,
session-to-session utterance variation is modeled as a pair
of distinct variations, one being session-dependent and the
other session-independent. In the formulation, the HMM
parameter set ~�s of speaker s estimated from the data
of speaker s including only session-independent variation
is mapped into HMM parameter set �(t)s estimated from
the data of speaker s and session t also including session-
dependent variation by the model transformation function
G
(t)
s as follows:

�(t)s = G(t)
s (~�s) (1)

In this paper, through preliminary investigation of the
model transformation functions, we consider G(t)

s of the
form for mean vector �sjk of mixture component k in state
j as

G(t)
s (~�sjk) = �

(t)
sjk = ~�sjk + b(t)s : (2)

The optimum set of HMM parameter set ~�s for speaker
s and the set of the model transformation functions of each
session ~Gs = ( ~G(1)

s ; ~G(2)
s ; : : : ; ~G(T )

s ) are jointly estimated
so as to maximize the likelihood using the SAT algorithm
[2][3][4], i.e.,

(~�s; ~Gs) = arg max
(�s;Gs)

TY

t=1

L(O(t)
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where O
(t)
s is the sample of speaker s and session t and L()

is the HMM likelihood function.
The SAT algorithm is a 3-step optimization of the model

transformation functions, mean and variance vectors (diag-

onal covariance HMMs). First, ~b
(t)
s in the model transfor-

mation function of Eq. (2) is optimized according to the
stochastic matching algorithm [6] as shown below.

~b(t)sl =

PJ

j=1

PK

k=1

PNt

n=1


(t)
sjk

(n)
o
(t)
sl

(n)�~�sjkl
�sjkl

PJ

j=1

PK

k=1

PNt

n=1



(t)
sjk

(n)

�sjkl

(4)

where subscript l denotes the lth component of the vectors,
Nt the sample size of session t, 


(t)
sjk(n) denotes the probabil-

ity of being in state j with mixture component k at time n
given that the HMM of speaker s generates the observation
vector o

(t)
s (n), and �sjk denotes the variance vector.

Then mean vector ~�sjk, variance vector ~�sjk is opti-
mized respectively, i.e.,
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where ~�(t)
sjk

(= �sjk +~b(t)s ) denotes the mean vector adapted
to the sample of session t.

3. COMPACT POOLED MODEL CREATION

In the likelihood normalization method based on a pos-
teriori probability [5], the a posteriori probability is used
for veri�cation decision, i.e.,

p(scjo) = p(ojsc)� p(sc)P
i
fp(ojsi)� p(si)g �

p(ojsc)P
i
p(ojsi) (7)

where si denotes a speaker, sc denotes the claimed speaker,
and o denotes the input speech. The p(si) is the probability
for speaker i and is assumed to be constant for all speak-
ers. The p(ojsc) is the probability of the claimed speaker's
HMM. Then

P
i
p(ojsi) is approximated by a likelihood

value for a pooled HMM made using the data set uttered
by all registered speakers based on the maximum likelihood
(ML) estimation since the number of calculations for the
summation is enormous.

According to Eq. (7) , when using compact speaker
HMMs,

P
i
p(ojsi) is the summation for the probabilities of

compact speaker HMMs and should be approximated by a
likelihood value for a compact pooled HMM made using the
same data set as that for forming compact speaker HMMs,
that is, the data set without session-dependent variation.

The parameters of a compact pooled HMM are esti-
mated using ~b(t)s optimized for each speaker and each ses-
sion in Eq. (4) . Mean vector ~�pjk, variance vector ~�pjk of
compact pooled model p is given by
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where ~�
(t)
pjk(= �pjk +~b

(t)
s ) denotes the mean vector mapped

by the model transformation function of speaker s and ses-
sion t.

4. EXPERIMENTAL CONDITIONS

The proposed method was evaluated in text-independent
speaker veri�cation experiments. The database comprises
sentence data uttered by 20 male speakers; 10 speakers were
used as customers and the remainder were used as impos-
tors. The sentences were selected from phonetically bal-
anced sentences [7] and were read. The speech was recorded
in seven sessions (T1-7) over 16 months and was recorded
in the same recording room using the same microphone for
all speakers and for all sessions. The sampling rate was
12 kHz. The cepstral coe�cients were calculated by LPC
analysis with an order of 16, a frame period of 8 ms, and
a frame length of 32 ms. We used 1-state, 16-Gaussian-
mixture, diagonal covariance HMMs as speaker models and
a 1-state, 64-Gaussian-mixture, diagonal covariance HMM
as a pooled model. For training, initial speaker models



Case X A B C D E

Training T1 [5] T1,T2 [10] T1-3 [15] T1-4 [20] T1-5 [25] T1-6 [30]
Testing T2 T3 T4 T5 T6 T7

Table 1: Sessions of sentences for training and testing ([ ]: total number of training sentences!K
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Figure 1: Equal error rate (%) comparison of several meth-
ods.

were created using �ve sentences from session T1 and the
models were recreated also using �ve sentences from the
next session respectively. The texts were varied from cus-
tomer to customer and from session to session. The av-
erage duration of each sentence was 4.2 sec. For testing,
the beginning 1 sec. of each of three sentences from the
subsequent session for training was evaluated individually.
The sentences for testing were di�erent from those for train-
ing and were the same for all customers and impostors and
all recording sessions. Table 3 lists sessions (case X, A-E)
of sentences for training and testing. In the experiments,
the likelihood normalization method based on a posteriori
probability was used. The threshold was set a posteriori
for individual speakers to equalize the probability of false
acceptance and false rejection, and an equal error rate was
used for evaluation.

5. RESULTS

Figure 1 shows the equal error rates for several combina-
tions of speaker models (SMs), compact speaker models
(CSMs), a pooled model (PM), and a compact pooled model
(CPM) for each case. In the \SM with PM" method, for
instance, each speaker model was conventionally recreated
based on the ML estimation using all available data of the
speaker in the case. Likelihood values of speaker models
were normalized using a likelihood value of a pooled model
recreated based on the ML estimation using all available
data of all registered speakers in the case. The \CSM with
CPM" method performed stably for each case and was the

16-SM 20-SM 24-SM 16-CSM
with PM with PM with PM with CPM

4.7 4.7 4.3 4.0

Table 2: Equal error rates (%) averaged over cases A to E
with di�erent numbers of mixture components.

best on average. The error reduction rate compared with
the \SM and PM" method was 15% on average.

Since compact speaker models are assumed to be cre-
ated using data including only session-independent utter-
ance variation, the models are expected to achieve the
same performance with fewer parameters than those needed
for conventional models created using data also includ-
ing session-dependent utterance variation. Table 2 lists
the equal error rates averaged over cases A to E for the
\SM with PM" method using speaker models with di�er-
ent numbers of mixture components. The \16-CSM with
CPM" method performed better than the \24-SM with
PM" method in which speaker models were represented
using 24-Gaussian-mixture HMMs. These results indicate
that compact speaker models e�ciently represent session-
independent speaker characteristics with the fewer param-
eters.

Cepstrum mean normalization (CMN) is a well-known
technique for canceling the e�ects of channels and utterance
variation in speaker recognition [8][9]. CMN has the advan-
tage of normalizing session-dependent utterance variation,
but it has the disadvantage of also normalizing statistical
speaker characteristics on the averaged cepstrum for each
utterance which is e�ective in speaker recognition [10]. Ta-
ble 3 compares the equal error rates with/without CMN.
The \1 session" method uses speaker models and a pooled
model made only using data at the latest session in the case.
The \CSM with CPM" method without CMN performed
best. While the rates for the \1 session" and \SM with
PM" methods without CMN were higher than those with

CMN 1 session SM CSM
with PM with CPM

- 10.2 4.7 4.0p
7.8 4.5 4.6

Table 3: Equal error rates (%) averaged over cases A to E
for several methods with/without CMN.



Case A B C D E
k SM k = 1.01 1.05 1.05 1.05 1.05
k CSM k [1.06] [1.16] [1.13] [1.14] [1.12]

Table 4: Averaged and [maximum] ratios of mixture-
variance norm for SM and CSM.

CMN, the rates for the \CSM with CPM" method without
CMN were lower than those with CMN. These results indi-
cate that in \1 session" and \SM with PM" methods, the
advantage of CMN overcomes its disadvantage and in the
\CSM with CPM" method, since compact speaker models
have e�ectively normalized the e�ects of session-dependent
utterance variation, the advantage is nulli�ed and the re-
maining disadvantage decreases the performance.

6. DISCUSSION

In order to con�rm the assumption in Section 2 , variance
vector norms of mixture-components for conventional SMs
and CSM have been examined. Variance vector �̂sjkl for
SMs is given by

�̂sjkl =

PT

t=1

PNt

n=1

0(t)sjk(n)(o

(t)
sl (n)� �̂sjkl)
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where 

0(t)
sjk(n) denotes the probability of being in state j

with mixture component k at time n given that the HMM
made based on the ML estimation using all available data
generates observation vector o(t)s (n). We can explain Eq. (6)
and Eq. (10) as a probabilistic average of each variance vec-
tor for session 1 to T with a weight corresponding to each
data length. When the assumption is true, each variance
vector of each session for CSM is closer to the uniformly
minimum variance unbiased estimator than that for SM.
Therefore, it is expected that the variance vector norms of
CSM should be smaller than those for SM.

Table 4 lists the averaged and maximum ratios of the
variance vector norms for SM and CSM. The ratios were
higher than 1.0 and hence the assumption would be reason-
able.

7. CONCLUSION

We have presented a new method for creating compact
speaker models using the SAT algorithm and a method
for creating a compact pooled model for compact speaker
models in the likelihood normalization method based on
a posteriori probability. Text-independent speaker veri�-
cation experiments showed that the combination of these
methods was e�ective and robust against session-to-session
utterance variation. Comparison of the performance be-
tween the proposed method and methods using conven-
tional speaker models with a larger number of mixture-
components showed that compact speaker models e�ciently
represent session-independent speaker characteristics with

fewer parameters. Moreover, comparison of the perfor-
mance between methods with/without CMN showed that
the proposed method e�ectively normalized the e�ects of
session-dependent utterance variation.

Further study includes investigation of more e�ective
model transformation functions for session-to-session utter-
ance variation and examination of the method using a larger
number of speakers and data in real �elds.
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