
DISTRIBUTED SIGNAL PROCESSING

Li Lee and Alan V. Oppenheim

Research Laboratory of Electronics
MIT, Cambridge, MA 02139

ABSTRACT

This paper explores issues arising from designing digital
signal processing algorithms for dynamically-varying com-
puting environments such as an unreliable network of pro-
cessors. We present a language for specifying signal pro-
cessing algorithms which permits the execution path of the
algorithm to be dynamically chosen. The language leads
naturally to a graphical representation of the algorithm
with interesting interpretations. Finally, we formulate and
characterize the solution for the problem of dynamically
and optimally choosing the execution path of algorithms
to minimize a system-wide cost function such as expected
congestion.

1. INTRODUCTION

With the growing prevalence of computer networks, the
ability to e�ciently exploit the computing power of the
entire network becomes increasingly attractive. While dis-
tributed networks o�er advantages of resource sharing and
fault tolerance, they are more dynamic than traditional
computing environments such as a microprocessor chip. In
this paper, we explore some issues arising from designing
digital signal processing algorithms with the assumption
that the computing environment is dynamically varying.
We are particularly interested in dynamically-varying, het-
erogeneous computing networks, in which the device capa-
bilities and link capacities vary throughout the network,
and the con�guration of the network can change unpre-
dictably.

Such a computing environment is fundamentally di�er-
ent from the traditional signal processing platform of single
chips, each individually designed and optimized to run spe-
ci�c algorithms on a speci�c architecture. When the com-
putation model is variable, algorithms should be designed
to adapt to the current state of the network. There are
two important implications of this requirement. First, al-
gorithms should not be designed with stringent assumptions
about the architecture of devices or even the availability of
certain devices. Second, their speci�cation must allow them
to be dynamically \optimized" to take advantage of the cur-
rent conditions of the network. In this paper, we present a

This researchwas supported in part by the U.S. Air Force Of-
�ce of Scienti�cResearch underGrant AFOSR-F49620-96-1-0072
and in part through collaborative participation in the Advanced

Sensors Consortium sponsored by the U.S. Army Research Lab-
oratory under Cooperative Agreement DAAL01-96-2-0001. Li

Lee is supported by an AT&T Graduate Research Fellowship for
Women.

language for specifying signal processing algorithms which
permits the execution path of the algorithm to be dynami-
cally altered. We then present and extend a graphical rep-
resentation of the language to a method of choosing the
execution paths to minimize the total expected processing
time experienced by any piece of data.

2. SIGNAL PROCESSING ALGORITHM
SPECIFICATION

Due to the mathematical framework inherent in their de-
sign, digital signal processing algorithms have the desirable
property that many common operations can be executed in
a variety of ways, all leading to the same �nal result. For
example,

� Convolution in the time domain is equivalent to mul-
tiplication in the frequency domain.

� High-order �lters can be implemented as a cascade of
lower-order �lters or as a sum of parallel lower-order
�lters.

� Filtering operations preceded or followed by up- or
down-samplers can be implemented using a variety
of polyphase structures.

Here we present a simple language for specifying signal
processing algorithms with a variety of di�erent execution
paths. We then show that the representation of the algo-
rithm as a directed graph leads to an intuitive interpretation
of the load-balancing problem when the execution paths of
algorithms are allowed to vary.

2.1. Algorithm Speci�cation

We consider algorithms which can be implemented as a
combination of primitive operations. For now we assume
that the set of available primitives in the system is pre-
speci�ed and denoted by R = fr1; r2; � � � ; rN g. The trade-
o�s involved in choosing a complete and \interesting" set
of ri's will be discussed later. Three operators in pre�x
notation are used to specify the algorithms:

� > Sequential operations. For example, (> r1 r2)
means that the only permitted execution sequence is
operation r1, then operation r2. Expressions of this
type will also be referred to as Then clauses.

� * Parallel operations. For example, (* r1 r2) means
that r1 and r2 can operate on the data concurrently.
Expressions of this type will also be referred to as
And clauses.

� + Alternative operations. For example, (+ r1 r2)
means that operations r1 and r2 are alternatives for
each other. Expressions of this type will also be re-
ferred to as Or clauses.

These operations can be nested and combined to form more
complex expressions. For example, the following expression
gives four di�erent alternatives for implementing a modu-
lated �lter bank [4]:

(+ (* (> Filter Down-sample)

(> Filter Down-sample)

... (> Filter Down-sample))

(> (+ (* Filter Filter ... Filter)

(> Serial->parallel

(* Filter Filter ... Filter))

(> Window Time-alias

Serial->parallel))

Discrete-Fourier-Transform))

Note that the �ltering operations in the above expression
refer to using the �ltering primitive with di�erent �lter co-
e�cients. Depending on the chosen set of primitive opera-
tions, the above expression can contain many more choices
of implementation. For example, �lters and discrete Fourier
transforms (DFTs) can be implemented in a variety of ways.

The following \algebraic" equivalences are rules of com-
mutativity, associativity, and distributivity which relate to
the composition rules of these algorithm operators:

� Commutative equivalences:
� (+ r1 r2) = (+ r2 r1)
� (* r1 r2) = (* r2 r1)

� Associative equivalences:
� (+ r1 r2 r3) = (+ (+ r1 r2) r3)

= (+ r1 (+ r2 r3))

� (* r1 r2 r3) = (* (* r1 r2) r3)
= (* r1 (* r2 r3))

� (> r1 r2 r3) = (> (> r1 r2) r3)
= (> r1 (> r2 r3))

� Distributive equivalences:
� (+ (> r1 r2) (> r1 r3))

= (> r1 (+ r2 r3))
� (+ (* r1 r2) (* r1 r3))

= (* r1 (+ r2 r3))

Note that the distributive equivalences require that the
common operation r1 refers to the same primitive applied
with the same arguments. For example, if �ltering is a
primitive in the system, then the distributive equivalences
apply only if the common operation refers to �ltering with
the same �lter coe�cients.

2.2. Algorithm graphs

The language gives rise to a graphical representation, which
leads to a simple conceptualization of load balancing in dis-
tributed networks. In particular, we can represent the al-
gorithm as a pyramid of directed graphs with two types of
edges. The �rst type is a \simple" edge, which corresponds
directly to a single primitive operation in the algorithm de-
scription. The second type (\compound" edge) corresponds
to an And-clause, and is further associated with directed
graphs which represent the arguments of the And-clause.

s -r1
s -r2

s -r3
s -r4

s

(a)

s s

r1

r2

r3

r4
(b)

Rz:
�

s s-
(* (> r1 r2) (+ r3 r4))

s
r1-s

r2-s s

r3

r4
s

(c)

Figure 1: (a) Directed graph representing (> r1 r2 r3 r4).
(b) Directed graph representing (+ r1 r2 r3 r4). (c) Di-
rected graphs representing (* (> r1 r2) (+ r3 r4)).

At the top level of the graph pyramid is a graph of the al-
gorithm which represents any And-clause with a compound
edge. Each lower level of the pyramid expands the And-
clauses of the previous level, so that at the bottom of the
pyramid is a collection of directed graphs with only edges
of the �rst type. We refer to the top-level graph of this
pyramid as the \algorithm graph".

To construct the graph pyramid based on the algorithm
expression, we �rst apply the equivalence rules presented
above to reduce the algorithm to a minimal form using as
few operators as possible. The graph for a Then-clause is
constructed following the rule that the origination node cor-
responding to each argument is simply the destination node
of the previous argument. As a example, Figure 1(a) shows
the graph for the expression (> r1 r2 r3 r4). In contrast,
the origin and destination nodes are the same for all argu-
ments of an Or-clause. As a example, Figure 1(b) shows the
graph for the expression (+ r1 r2 r3 r4). An And-clause is
represented by a single edge between its origin and destina-
tion nodes, and a collection of lower-level graphs of each of
its arguments. Figure 1(c) shows the graph for the expres-
sion (* (> r1 r2) (+ r3 r4)), where we have represented
the And-clause edge using a bold line. These rules apply
recursively to all sub-clauses.

In the algorithm graph, each edge represents one trans-
formation of the data, and each node represents one state of
the data. Hence, the di�erent paths connecting two di�er-
ent nodes in the graph correspond to di�erent sequences of
operations which have exactly the same e�ect on the data.
Every path from the origin to the destination node of the
algorithm graph corresponds to one possible execution path
of the algorithm. (Notice that traversing a compound edge
involves traversing all of the lower-level graphs associated
with that edge.)

2.3. Choice of Primitives

The choice of the primitives is important since they are the
building blocks of the algorithms implementable in the sys-
tem. First, the set of all functions provided in the system
must be complete, so that a large number of algorithms can
be speci�ed using these basic functions. Secondly, the gran-
ularity of this set of functions must be appropriate. If all
of the primitives perform high-level functions, alternative
implementations of algorithms become di�cult to specify,
and the algorithm graph becomes uninteresting single-edge
graphs. In the other extreme, if the primitivies perform
only bit-wise multiplication or addition, algorithm speci-
�cations become impossibly cumbersome, and the cost of
communications and control overhead incurred from pass-
ing the data from point to point in the network dominate
the processing costs.

3. STATISTICAL COMPUTATIONAL MODEL

The algorithm speci�cation presented above is useful in de-
scribing how the system can \optimize" the processing us-
ing information on current system conditions such as load
and availability of processors and links of the system. In
this section, we present a framework to minimize the av-
erage processing time experienced by data in the network.
This framework draws heavily on the representation of the
algorithm as a directed graph.

We �rst consider a single stream of data blocks which
all require processing by the same algorithm. The system
objective is to choose the algorithm execution path for each
data block so that the average processing time experienced
by each block is minimized. We conceptualize this as a
routing problem through the algorithm graph. In this con-
ceptualization, each directed edge of the algorithm graph is
analogous to a link in an \algorithm network". Since each
edge corresponds to a processing primitive, crossing a link
is analogous to transforming the data with the associated
processing primitive. Data blocks are analogous to data
packets which need to be routed from an origin to a des-
tination. With multiple data streams, the analogy can be
extended to routing through a highly complex network with
many di�erent origin-destination pairs. The problem of dy-
namically choosing an execution path for each data block
is conceptually similar to the problem of dynamic routing
encountered in data networking and multi-commodity
ow
literatures.

However, there are important di�erences between the
execution path assignment problem here and the routing
path selection problem in data networks. First, the pres-
ence of And-clauses in the algorithm graph has no direct
equivalence in data networks. An And-clause in an execu-
tion path implies that the data is processed by all of the
arguments of the clause before the next processing opera-
tion starts. An analogous requirement in the data network
sense would be highly unusual. Second, in a data network,
sending a packet of data across a link generally does not
change the size of the packet signi�cantly. In the algorithm
graph, however, since each link corresponds to processing
the data with a speci�c primitive, the resulting packet size
can change dramatically. Simple examples of primitives

which would change the data size dramatically include up-
or down-samplers, multiplexers, and de-multiplexers.

Despite these di�erences, we show here that, with some
modi�cations, existing networking literature on characteri-
zations of optimal routing can be used to specify how exe-
cution paths can be chosen to minimize the expected pro-
cessing time of each packet.

3.1. Optimal Execution Path Assignment

In this subsection, we formulate the problem of choosing the
execution path for each data block as a contrained optimiza-
tion problem where the goal is to minimize the expected sys-
tem congestion in steady-state. Notice that this is a system
optimization problem, rather than an individual optimiza-
tion problem where the execution path of each packet of
data is chosen to minimize the delay for that packet without
regard to the rest of the system. We choose this system-
wide optimization problem since individual-based optimiza-
tion often su�ers from instabilities in the system when the
link rates change, and our system of processors are assumed
to be unreliable.

Consider a network of processors, each implementing a
primitive operation r 2 R, where R is the set of all primitive
operations. (Note that there may be more than one proces-
sor which implements any particular function.) A denotes
the set of algorithms fa1; a2; � � � ; aNg implementable using
these primitives. ra denotes the rate (in data units/s) at
which data requiring processing with algorithm a 2 A en-
ters the network. Pa denotes the set of all execution paths
for algorithm a. x� denotes the rate (in data units/s) at
which data is processed through execution path �, here-
after also referred to as the
ow of data through path �.
Finally, X = fx�j� 2 Pa; a 2 Ag denotes the vector of path

ows x�i through all paths � in A.

Under this setup, the load, or combined input rate, on
processors implementing primitive r can be expressed as

Lr =
X
�

M�(r)x�; (1)

where M�(r) is a multiplier relating the total data
input rate to primitive r to the execution path

ow x�. As an example, in the path expressed by
(> filter downsample-2 filter downsample-2 filter),
the multiplier associated with the �lter primitive is 1.75,
since the input rate to the second �lter is at half the
original input rate, and the input rate to the third �lter
is at a quarter of the original input rate. Of course,
M�(r) = 0 if the primitive r is not used on path �.

The delay, or general cost, associated with processing
with primitive r is assumed to be a function of only the load
on that class of processors, so that the total cost function
is

D(x) =
X
r

Dr(Lr) =
X
r

Dr

"X
�

M�(r)x�

#
; (2)

where Dr(�) is the cost function associated with primitive
r.

The optimal execution path assignment problem can

now be formulated as follows:

minimize
X
r

Dr

"X
�

M�(r)x�

#

subject to
X
�2Pa

x� = ra; for all a 2 A (3)

x� � 0; for all � 2 Pa; a 2 A

This problem, which minimizes the cost function (2)
in terms of the unknown vector of path
ows X, is the
optimal routing problem encountered in data networks and
multi-commodity
ow problems. From [1], the optimality
condition can be derived in terms of the �rst derivative of
the cost function with respect to path
ows:

@D(x)

@x�
=
X
r2x�

dDr

dLr
M�(r):

In particular, restricting Dr(Lr) to be convex and monoton-
ically increasing with Lr, the path
ow vector X� = fx��g
is optimal if and only if

x�� > 0!
@D(x�)

@x�0

�
@D(x�)

@x�
; for all �0 2 Pa. (4)

In words, data is routed on the execution paths with the
smallest �rst derivative costs, and all execution paths with
positive
ow have the same �rst derivative.

Numerical algorithms to solve this problem in the data
network scenarios have been developed [2][3]. Many of
these solutions are based on using gradient projection meth-
ods, and have been extended and shown to converge for
distributed and asynchronous implementations. Since the
nodes in the algorithm graph do not have a physical inter-
pretation, however, a direct application of these algorithms
to the execution path selection problem will require that
every processor in the system knows about the state of all
the other processors. An e�cient algorithm which requires
a minimal amount of inter-processor communication over-
head needs to be developed.

3.2. Cost Function

The optimality condition in Eqn. (4) was derived under
loose conditions that the cost functions Dr are convex and
monotonically increasing. In this subsection, we further our
description of the computation model by specifying Dr in
terms of statistics such as the speed of the processors and
the operating load on them.

Suppose that the network contains Nr processors imple-
menting primitive operation r, and each processor ri has the
processing rate of �ri data units/s. We assume the load Lr
is distributed among these Nr processors according to their
processing rates, so that the probability pi that a data block
is processed by processor ri, given that it requires process-
ing by primitive r, is

pi =
�riPNr

i=1
�ri

:

Physically, a data block requiring processing by r is sim-
ply routed to ri with probability pi, regardless of the cur-
rent load on ri. While in principle, the system could keep

track of the load on each processor, the overhead incurred
from implementing such a control strategy is generally pro-
hibitively high.

We now characterize the expected number of jobs in the
system of type-r processors as seen by a data block waiting
for service from a type-r processor. We model the waiting
system associated with each processor as anM=M=1 queue.
That is, we assume that data blocks arrive for processing
according to a Poisson process, and that the probability
distribution of the service time is exponential. Each pro-
cessor has an in�nite queue, so that no data is rejected or
dropped by any processor. With these assumptions, the
expected number of jobs in the system of any processor of
type r (i.e., the number in the queue, plus the one currently
being serviced) is

NrX
i=1

pi
piLr

�ri � piLr
=

LrPNr

i=1
�ri � Lr

=
Lr

Cr � Lr
: (5)

Using Cr to denote the total processing capacity of type
r processors, and dr to denote the average processing and
communication delay (in seconds/data unit), one possible
form for the cost function Dr can then be de�ned as ([1])

Dr(Lr) =
Lr

Cr � Lr
+ drLr : (6)

Notice that Dr is convex and monotonically increasing for
Lr 2 [0; Cr). Qualitatively, under light load conditions
(Lr � Cr), the processing cost is dominated by commu-
nication and actual processing time. Under congested con-
ditions (Lr ! Cr), however, the processing delay is domi-
nated by queuing time. In particular, as the load Lr nears
the total capacity Cr, the cost incurred by processing with
primitive r will grow unbounded.

4. CONCLUSION

This paper describes a framework and formulation for dy-
namically adapting signal processing algorithms to proces-
sor conditions in distributed processing environments. By
conceptualizing the algorithm graph as a network through
which data is routed, we formulate the problem of dy-
namic execution path selection as a constrained optimiza-
tion problem, similar to those seen in data network and
multi-commodity
ow literature. Currently, we are imple-
menting a simulation to test the applicability of our models
and algorithms.

5. REFERENCES

[1] D.P. Bertsekas and R.G. Gallager. Data Networks, 2nd

Edition, Prentice-Hall, 1992.

[2] R.G. Gallager. \A Minimum Delay Routing Algorithm
Using Distributed Computation," IEEE Transactions

on Communications, Vol. 23, pp. 73-85.

[3] J.N. Tsitsiklis and D.P. Bertsekas. \Distributed Asyn-
chronous Optimal Routing in Data Networks," IEEE

Transactions on Automatic Control, Vol. 31, pp. 325-
331.

[4] P.P. Vaidyanathan. Multirate Systems and Filter Banks

Prentice Hall, 1993.

