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ABSTRACT

Chebechev's inequality theorem from the theory of proba-
bility and statistics provides an upperbound for the amount
of probability in the "tails" of any given probability density
function. This theorem has interesting applications in the
numerical solution of the Fokker-Planck-Kolmogorov Equa-
tion (FPKE) as shown in this paper. Numerical solution of
FPKE is an essential component of the design of optimal
nonlinear �lters. The solution of the FPKE in conjunction
with the Bayes' conditional density lemma provides optimal
(minimum variance) state estimates of any general stochas-
tic dynamic system (SDS).

1. INTRODUCTION

The time evolution of the states of SDS is completely de-
scribed, mathematically, by the FPKE [3]. The solution of
the FPKE gives transition probability densities of the states
of the associated SDS. These densities can be conditioned
on the measurements by using the Bayes' theorem giving
rise to conditional densities. Means of these conditional
densities give the optimal state estimates of the SDS [4]. It
has been well documented in literature that the analytical
solution for the FPKE is extremely di�cult to obtain ex-
cept in a few special cases [5]. The special cases for which
analytical solutions exist are for those systems that have
a stationary solution or for those systems having PDF's in
analytically tractable functional forms. This motivates the
use of numerical methods for solving the FPKE. This ap-
proach is deemed timely because of the growing interest in
the numerical solution of FPKE [6, 7, 2]. The generally
used methods use either �nite di�erence methods or �nite
element methods. We used �nite di�erence methods in solv-
ing FPKE (numerically) in the examples considered in this
paper. While implementing the �nite di�erence methods
the state variable domain is discretised and is de�ned at
�nite number of equally spaced grid points. Before we de-
�ne these points we need to de�ne the maximum limits of
the state variable domain. This brings us to the central
problem of this paper and is described in the next section.

The solution of FPKE is a probability density function.
As the probability densities extends over the entire state
variable (or RV) domain (�1 to +1 in most cases) some
form of truncation of this domain is sought when solving
the FPKE numerically. Many ad hoc methods exist for
such truncation of the state variable (or RV) domain but

to the best of the authors knowledge this issue did not re-
ceive much attention in literature. This situation, according
to our conjecture, arose because much of the research work
published in this area is motivated by physical sciences deal-
ing with systems having stationary analytical solutions. In
many physical sciences' applications, where transition prob-
ability densities of a SDS were required, numerical solutions
for the FPKE were used. Once again, as these numerical
solutions were sought for systems exhibiting stationary so-
lutions they were, to some extent, free from an inherent
problem a�ecting SDS's having non-stationary solutions.
In this paper we not only present, formally, the problem
of random variable domain truncation in a recursive esti-
mation scheme, but also provide a statistically consistent
and optimal method, based on the Chebechev's inequality
theorem, to truncate the the same.

2. THE PROBLEM OF MOVING

SIGNIFICANT DOMAIN IN OPTIMAL

RECURSIVE ESTIMATION

In non-linear �ltering problems the dynamical systems sel-
dom have stationary solutions thus the associated FPKE's
also rarely have stationary solutions. When an FPKE has
a stationary solution the evolving probability densities ap-
proach a stationary PDF which "settles" about a certain
mean with certain functional form, and as time evolves the
signi�cant values of the PDF does not move over its do-
main. However, in nonlinear �ltering problems (e.g. target
tracking problems) the signi�cant mass of the evolving PDF
moves over the state variable domain. Thus care must be
taken while truncating this domain. The domain has to be
truncated in such a manner that the evolved PDF's signif-
icant mass must not go beyond the maximum limits of the
state variable domain. To avoid this problem researchers
usually set the domain large enough for the evolved PDF's
to stay within the maximum limits for the time of propaga-
tion. This has a major disadvantage that a great number
of computations are carried out on that part of the domain
that has very little contribution to the over all solution of
FPKE. Sometimes, to reduce computations, the state vari-
able domain is chosen to be too small resulting in the loss
of vital information regarding the underlying PDF. More-
over, the domain corresponding to the signi�cant mass of
the PDF changes with time as the PDF evolves in time
in accordance with FPKE, thus leading to the problem of
moving signi�cant domain. Thus the three fundamental



problems that exist in the numerical solution of FPKE may
be summarised as follows:

� If the maximum limits of the domain of integration
for solving FPKE are set too narrow (say Xmin1 and
Xmax1 in �gure 1 )then the evolved PDF may have its
signi�cant mass outside these pre-�xed limits.

� If the maximum limits of the domain of integration for
solving FPKE are too wide (say Xmin2 and Xmax2 in
�gure 1) then the algorithm ends up performing a lot
of computation on the domain contributing very little
to the over all solution of FPKE.

� Even if the maximum limits of the domain are chosen to
be optimal for the current time, as the FPKE's solution
evolves in time these limits cease to be optimal for all
time. Figure 2 provides an illustration of this problem.
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Figure 1. The problem of random variable domain trunca-
tion
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Figure 2. The moving signi�cant domain problem

This necessitates the need to obtain these limits in a re-
cursive manner for each propagation time. In the next sec-
tion we propose the use of the Chebechev's inequality theo-
rem in conjunction with the moment evolution equations to
obtain the limits of the state variable domain in an optimal
manner.

3. DETERMINATION OF OPTIMAL

SIGNIFICANT DOMAIN IN RECURSIVE

ESTIMATION PROBLEMS

In solving the FPKE numerically, with optimal truncation
of the state variable domain, one needs to know the limits

of both the present and future domains where PDF's signif-
icant mass exists. With the knowledge of the present and
future second moments these limits can be evaluated using
the Chebechev's inequality theorem. Chebechev's inequal-
ity theorem from the theory of probability and statistics
provides an upperbound for the amount of probability in
the "tails" of any given probability density function as a
function of its standard deviation. This theorem holds for
nearly all types of probability density functions (continuous
& discrete). Its application is not limited by any functional
form of the PDF's. This generality provides it with the
power to deal with the evolving PDF's from the solution
of FPKE. The determination of the optimal state variable
domain is as shown in the block diagram in �gure 3.
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Figure 3. The Block Diagram of the Optimal State Vari-
able Domain Determination

3.1. Chebechev's Inequality Theorem

If x is a random variable having mean � and variance �2 >
0, then

P (jx� �j � ��) �
1

�2
(1)

where � is any positive constant. In other words, the proba-
bility that a realization of the random variable x lies within
the limits �� �� and �+ �� is given by 1� 1

�2
.

3.2. Application of Chebechev's inequality theo-

rem

In section 2 we presented the moving signi�cant domain
problem. Here we present a statistically consistent method
to obtain an optimal state variable domain. The state vari-
able domain is optimal if the PDF's signi�cant mass lies
within that domain. The signi�cant mass of a PDF can be
speci�ed as a signi�cance level of the random variable under
consideration. For example, if the PDF's signi�cant mass
is speci�ed as :99 then the probability that the realization
of the random variable will lie within the limits set by the
optimal state variable domain is :99. The associated � is

given by � =
q

1
1�0:99

. The limits can then be obtained as

shown in section 3:1 Since the true PDF is known numeri-
cally it is a straight forward matter to evaluate its current
second moment but as one doesn't know the actual future
PDF, unless one solves the FPKE, an alternate method is
suggested for its future second moment thus its future sig-
ni�cant domain. This is based on the evolution of second



moment using moment evolution methods. We can opti-
mally predict the future second moments for linear SDS's
and for certain nonlinear systems in this scheme. Thus in
nonlinear �ltering problems characterised by linear SDS's
and nonlinear measurements and certain nonlinear SDS's
and nonlinear measurements, the FPKE can be solved nu-
merically with optimal truncation of state variable domain.

3.3. Moment Evolution Equations

In section 3.2 we have shown that for optimal truncation
of the state variable domain we need to know the current
PDF's mean and variance as well as the evolved PDF's
mean and variance. The later has to be known without
�nding the actual evolved PDF. A simple way of �nding
the evolved moments are obtained by applying lemma 6.1
[4]. As we are interested in only �rst two moments, we can
use theorem 6.2 [4] to obtain the evolved mean and variance.
Consider a continuous time SDS described by

dXt

dt
= F (Xt) +G(Xt)�t t � t0 (2)

where Xt = [x1; x2; : : : ; xn] represents the state vector of
the system at any time t. F (Xt) is a linear/non-linear vec-
tor valued function with real components and G(Xt) is a
n�m real matrix and �t is a white Gaussian noise process,
�t � N(0; Qt. Given this SDS the theorem 6.2 [4] states
that between measurements the conditional mean (E[Xt])
and conditional covariance matrix (Pt) satis�es:

dE[Xt]

dt
= E[F (Xt)] (3)

dPt

dt
= (E[XtF

T (Xt)]�E[Xt]E[F (Xt)])

+(E[F (Xt)X
T
t ]�E[F (Xt)]E[Xt]

T ) (4)

+E[G(Xt)QG(Xt)
T ]

The E[(:)] refers to the expected value of (:). The expected
values appearing in the above equations can be evaluated
numerically using the available evolved PDF from the ear-
lier iteration of the FPKE based nonlinear �ltering algo-
rithm. This algorithm and the implementation issues are
presented in the next section.
The current values of the mean and variance enable us

to �nd the current optimal state-variable domain by the
use of Chebechev's inequality theorem. Similarly, by the
knowledge of the future moments (from moment evolution
equations) we can �nd the optimal domain for the evolved
PDF. Thus the optimal state variable domain for the com-
plete time of PDF evolution, from the current time to the
future time, is the union of these two domains.

4. FPKE AND NON-LINEAR FILTER DESIGN

Consider a continuous time SDS presented in section 3.3.
Observations Y (tk) of this system are taken at discrete time
instants tk :

Ytk = H(Xtk) + �k; k = 1; 2; : : :

tk+1 > tk � t0 (5)

where H(Xtk) is a linear/non-linear function of the observ-
able states of the SDS and �k � N(0; Rk).
Under the assumption that the prior density for the above

system exists and is once continuously di�erentiable with
respect to t and twice continuously di�erentiable with re-
spect to Xt it can be shown that, between observations,
the conditional density p(XtjYt) satis�es the FPK forward
di�usion equation

@p

@t
= �

nX
i=1

@[pFi]

@xi
+

1

2

nX
i=1

nX
j=1

@[p(GQGT )ij ]

@xi@xj
(6)

where p(XtjYt), Fi(Xt), G(Xt), Qt are replaced by p, Fi,
G, and Q respectively for the sake of simplicity.
At an observation (at tk) the conditional density satis�es

the di�erence equation

p(Xtk jYtk ) =
p(Ytk jX)p(Xtk jY

�

tk
)R

p(Ytk jX)p(Xtk jY
�

tk
)

(7)

where p(YkjX) is given by

p(YkjX) =
1

(2�)
m

2

� e
�

1

2
[Yk�H(Xt

k
)]TR�1

k
[Yk�H(Xt

k
)] (8)

where m gives the number of components in measurements
vector obtained. The equations (6) and (7) form the predic-
tor and corrector equations of the density evolution method
[4]. The means of the conditional density obtained by eval-
uating equation (7) gives the optimal state estimates.
Since there exists no analytical solution for equation (6),

a simple explicit �nite di�erence method is used to solve
it numerically. In the present implementation the follow-
ing �nite di�erence approximations are used for the partial
derivatives appearing in (1) and the choice of 4t, h are
made in accordance with the condition of stability:

�
@f(X; t)

@t

�
ti

=
f(X; ti)� f(X; ti�1)

4t
(9)

where 4 t = ti � ti�1 i = 1; 2; : : :

�
@f(X; t)

@X

�
ti�1

=
f(Xk+1; ti�1)� f(Xk�1; ti�1)

2h
(10)

�
@2f(X; t)

@X2

�
ti�1

=

f(Xk+1; ti�1)� 2f(Xk; ti�1) + f(Xk�1; ti�1)

4h2
(11)

where h = xk � xk�1 k = 1; 2; : : :

Finite-di�erence methods are approximate in the sense that
derivatives at a point are approximated by di�erence quo-
tients over a small interval but the solutions are not approx-
imate in the sense of being crude estimates.
The condition for stability of the explicit �nite di�erence

method is that the grid spacing in the time domain, 4t, and



grid spacing in the state variable domain, h, must satisfy
the following inequality [1]:

0 <
4t

h2
�

1

2

The solution obtained by solving equation (6) using the ap-
proximations de�ned in equations (9),(10),and (11) is used
in Bayes' conditional lemma given by equation (7) to obtain
the conditional density of the evolved PDF conditioned on
the measurements obtained through equation (5).
Since the solution was obtained by solving equation (6)

numerically we solved the equation (7) also numerically.
In this paper all the examples considered used trapezoidal
integration in evaluating the integral present in the denom-
inator of equation (7).
Although other methods like implicit �nite di�erence

methods and �nite element methods exist, we used the
explicit �nite di�erence for the ease of implementation
and for quick demonstration of the application of the
Chebechev's inequality theorem. We emphasise the fact
that the Chebechev's inequality theorem is not limited to
any particular numerical method used for solving the FPKE
and that it can be used with any numerical method where
truncation of the RV's domain is required.

5. SIMULATION RESULTS

In order to illustrate the e�ectiveness of the application of
the Chebechev's inequality theorem in the design of opti-
mal nonlinear �lters using the FPKE, we implemented the
optimal �lters with and without the optimal truncation of
the state variable domain on a single dimensional nonlinear
�ltering problems. We take the example of a linear SDS
and nonlinear measurements �ltering problem. The initial
values of the state variable was chosen as 3 while the initial
information given to the �lters were in the form of a Gaus-
sian density with mean 2 and variance 0.16. The system
noise variance was chosen to be 0.01 and the measurement
noise variance was chosen to be 0.2. The integration step
length (or equivalently discretisation step in time domain)
was chosen as 0.001 sec and the continuous state variable
domain was approximated by a set of grid points separated
by 0.08 units. When the density evolution method is ap-
plied to obtain optimal estimates for a system with following
system dynamics,

_X(t) = �1:5X + �t (12)

The measurements are nonlinear and are given by

Z(t) = X
3(t) + �t (13)

where �t and �t are the system and measurement noises
respectively and X(t) represents system state at time t.
It is clearly evident from the �gure above that the error

between the implementations of of FPKE with and with-
out optimal truncation of the state variable domain are
negligible while the computations have come down dras-
tically. The FPKE implementation without optimal trun-
cation was working on 1500 points on the state variable
domain while the FPKE implementation with optimal trun-
cation was working on progressively lesser number of points.
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Figure 4. The estimation accuracy with and without opti-
mal truncation of the state variable domain

The number of points stabilised after reaching 129 which is
signi�cantly less than 1500 points. The � was chosen to be
5.

6. CONCLUSIONS

An interesting and extremely useful application of the
Chebechev's inequality theorem in the design of the op-
timal nonlinear �lters is presented. It is demonstrated that
the proposed method, while reducing the computations in-
volved considerably, does not sacri�ce the estimation ac-
curacy. The proposed method using the Chebechev's in-
equality theorem in arriving at the optimal limits of the
state variable domain is extremely powerful because it is
not only independent of the numerical methods used in ob-
taining the solution of the FPKE, but also independent of
the form of the PDF's evolving out of the FPKE. Finally, it
is shown that in a recursive estimation scheme the compu-
tations involved will progressively decrease as the variance
of the estimated state variables decrease.
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