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ABSTRACT

A new con�guration for a stereo echo canceller with
nonlinear pre-processing is proposed. The pre-processor
which adds uncorrelated components to the original re-
ceived stereo signals improves the adaptive �lter con-
vergence even in the conventional con�guration. How-
ever, because of the inaudibility restriction, the pre-
processed signals still include a large amount of the
original stereo signals which are often highly cross-
correlated. Therefore, the improvement is limited. To
overcome this, our new stereo echo canceller includes
exclusive adaptive �lters whose inputs are the uncorre-
lated signals generated in the pre-processor. These ex-
clusive adaptive �lters converge to true solutions with-
out su�ering from cross-correlation between the origi-
nal stereo signals. This is demonstrated through com-
puter simulation results.

1. INTRODUCTION

A stereo teleconferencing system provides greater pres-
ence than a monaural system. However, such a system
requires stereo echo cancellers to suppress the acoustic
echoes which may otherwise cause howling. One of the
most signi�cant problems with the stereo echo canceller
is that the adaptive �lters often misconverge or, if not,
convergence speeds are very slow because of the cross-
correlation between stereo signals[1, 2, 9]. Recently,
there has been interest in applying pre-processed stereo
signals to both the adaptive �lter inputs and the loud-
speaker inputs, which may help the adaptive �lters
converge to their true solutions[9]. In fact, practical
pre-processing methods have been proposed whose dis-
tortion audibilities are very low for their improvement
of the adaptive �lter convergence[4, 5]. However, the
pre-processor itself may be inherently limited in terms
of improving the adaptive �lter convergence because
of the inaudibility restriction. On the other hand, no
adaptive algorithm actively takes into account how the
input signals are pre-processed.

In this paper, we propose a new con�guration for

a stereo echo canceller with nonlinear pre-processing.
It includes separate adaptive �lters for both the origi-
nal signals and the additive nonlinear signals, both of
which are extracted before being combined as the pre-
processed signals. If the additive signals are generated
to be uncorrelated to the original ones, the adaptive
�lters for the additive signals converge to the true solu-
tions without su�ering from cross-correlation between
the original signals.

2. CONVENTIONAL STEREO ECHO

CANCELLER CONFIGURATION

A conventional stereo echo canceller is shown in Fig. 1.
Although one more microphone is actually necessary,
we omit showing it because the process is symmet-
rical and independent. The function block is a pre-
processor for adding the variation in cross-correlation
between the stereo signals[9]. Practical methods for
pre-processing have been proposed[4, 5]. Following the
description in Ref. [4], the pre-processed signals are
represented as x0

1(k)=x1(k)+�1f1[x1(k)] and x0

2(k)=x2(k)+
�2f2[x2(k)], where x1(k) and x2(k) are the signals received
from the far end, �1 and �2 are tuning parameters, and
f1 and f2 are generally nonlinear functions. The echo
y(k) picked up by the microphone is modeled as

y(k) = x
0T
1 (k)h1(k) + x

0T
2 (k)h2(k); (1)
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Figure 1: Conventional con�guration of a stereo echo can-

celler with pre-processing.



where x0

1(k)=[x0

1(k); x
0

1(k�1); : : : ; x
0

1(k�L+1)]
T, x0

2(k)=[x0

2(k),
x0

2(k�1); : : : ; x
0

2(k�L+1)]
T, h1(k) and h2(k) are the echo path

impulse response coe�cient vectors, L is the length of
h1(k) and h2(k), k is a discrete time index, and T indicates

a transpose. The adaptive �lters ĥ1(k) and ĥ2(k) should
identify the true echo paths h1(k) and h2(k) and cancel
the echo y(k) generating the echo replica ŷ(k):

ŷ(k) = x
0T
1 (k)ĥ1(k) + x

0T
2 (k)ĥ2(k): (2)

The two-channel versions of the normalized least mean
squares (NLMS) algorithm[5], the (a�ne) projection
algorithm[3, 9, 10], and the recursive least squares (RLS)

algorithm[2, 4] are mainly used to update ĥ1(k) and ĥ2(k).
The pre-processor improves the adaptive �lter con-

vergences. However, because of the inaudibility restric-
tion, the pre-processed signals x0

1(k) and x0

2(k) still in-
clude a large amount of the original signals x1(k) and
x2(k) which are often highly cross-correlated. There-
fore, the signals added in the pre-processor cannot ef-
fectively contribute to improving the convergences of
the adaptive �lters in the conventional con�guration.

3. NEW STEREO ECHO CANCELLER

CONFIGURATION

3.1. Four-adaptive-�lter structure

Wepropose a new con�guration for the stereo echo can-
celler, in which exclusive adaptive �lters are arranged
for the additive signals (Fig. 2).

The pre-processed signal vectors x0

1(k) and x
0

2(k) are
denoted as

x
0

1(k)=x1(k) + �1�x1(k); (3)

x
0

2(k)=x2(k) + �2�x2(k); (4)

where

x1(k)= [x1(k); x1(k�1); : : : ; x1(k�L+1)]; (5)

x2(k)= [x2(k); x2(k�1); : : : ; x2(k�L+1)]; (6)

�x1(k)= [f1[x1(k)]; f1[x1(k�1)]; : : : ; f1[x1(k�L+1)]]; (7)

�x2(k)= [f2[x2(k)]; f2[x2(k�1)]; : : : ; f2[x2(k�L+1)]]: (8)

Substituting Eqs. (3) and (4) to Eq. (1), we obtain

y(k)=xT1 (k)h1(k) + x
T
2 (k)h2(k)

+�1�x
T
1 (k)h1(k) + �2�x

T
2 (k)h2(k): (9)

Then, by introducing the exclusive adaptive �lters �h1(k)
and �h2(k), the echo replica ŷ(k) is generated as

ŷ(k)=xT1 (k)ĥ1(k) + x
T
2 (k)ĥ2(k)

+�1�x
T
1 (k)�h1(k) + �2�x

T
2 (k)�h2(k): (10)

Even though x1(k) and x2(k) are highly correlated, �h1(k)
and �h2(k) should converge to h1(k) and h2(k) respectively,
if �x1(k) and �x2(k) are uncorrelated to each other, and
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Figure 2: A new con�guration for the stereo echo canceller.

also to both x1(k) and x2(k). Then, as shown in Fig. 2,
the echo cancellation is actually achieved by using the
echo cancellation �lters c1(k) and c2(k) whose coe�cients
are transferred from �h1(k) and �h2(k) respectively only
when �h1(k) and �h2(k) are judged to be in good condition.
This can be regarded as a kind of \duo-�lter control
system[8]" which has the advantage of robustness dur-
ing double-talk.

3.2. Desirable pre-processing

From 3.1, f1 and f2 in the pre-processor should satisfy
the following conditions:

rf1f2(n)=E [f1[x1(k)]f2[x2(k � n)]] � 0; (11)

rf1x1(n)=E [f1[x1(k)]x1(k � n)] � 0; (12)

rf2x2(n)=E [f2[x2(k)]x2(k � n)] � 0; (13)

rf1x2(n)=E [f1[x1(k)]x2(k � n)] � 0; (14)

rf2x1(n)=E [f2[x2(k)]x1(k � n)] � 0; (15)

for every discrete time index n, where E[�] denotes the
expectation.

We consider choosing the absolute fa as f1:

f1[x(k)] = fa[x(k)] = jx(k)j: (16)

This satis�es Eq. (12), ifE[x2(k)]jx(k)>0�E[x2(k)]jx(k)<0.
We note that

fa[x(k)] = 2fb[x(k)]� x(k); (17)

where the function fb is given in Ref. [4] as

fb[x(k)] =

�
x if x(k) � 0
0 otherwise.

(18)

Thus, the psychoacoustical in
uence of the function fa
on x(k)+�fa[x(k)] is similar to that of fb, whose psychoa-
coustical advantage is supported in Ref. [4]. However,
f1 = fa satis�es Eq. (12), while f1 = fb does not. This
is signi�cant for our con�guration. Next, we have to
choose f2 to satisfy Eq. (11). A possible example is

f2[x(k)] = �jx(k)j; (19)



where � = 1 or �1, with the sign being changed every
time both of the following conditions are satis�ed: x(k�
1)x(k)� 0 and x(k)� 0. Then f2 is psychoacoustically
similar to f1, but Eqs. (11) and (13) are satis�ed. The
above chosen functions f1 and f2 also satisfy Eqs. (14)
and (15) in usual situations.

It should be remarked that the desirable inputs of
�h1(k) and �h2(k) are not necessarily signals such that for-
mulated as �1f1[x1(k)] and �2f2[x2(k)]. In general, those
signals which are uncorrelated to each other and also to
both of the original received stereo signals are required.
In this sense, while the con�guration proposed in Ref.
[6] is similar to ours, its exclusive adaptive �lter inputs
"1(k) and "2(k), which are generated to be uncorrelated
to x1(k) and x2(k) respectively, are still correlated to x2(k)
and x1(k) respectively. Therefore, this can be a reason
why the con�guration[6] does not achieve a satisfactory
result.

3.3. Algorithm modi�cation

Using f1 and f2 described in Eqs. (16) and (19), and
setting �1 = �2 = �, we consider the case where the
four adaptive �lters ĥ1(k), ĥ2(k), �h1(k), and �h2(k) are up-
dated using the four-channel NLMS algorithm:2
664
ĥ1(k+1)

ĥ2(k+1)
�h1(k+1)
�h2(k+1)

3
775=
2
664
ĥ1(k)

ĥ2(k)
�h1(k)
�h2(k)

3
775+ �e(k)

(1+�2)(kx1(k)k
2+kx2(k)k

2)

2
664
x1(k)
x2(k)
��x1(k)
��x2(k)

3
775 ;

(20)

where � is a stepsize parameter and e(k) = y(k)� ŷ(k).
The characteristics of the adaptive �lter convergences
can be analyzed using the covariance matrix R0:

R
0 =

1

1 + �2

�
R 0

0 �2 �R

�
; (21)

where

R=E

�
1

kx1(k)k
2+kx2(k)k

2

�
x1(k)xT1(k) x1(k)xT2(k)
x2(k)xT1(k) x2(k)xT2(k)

��
; (22)

�R=E

�
1

kx1(k)k
2+kx2(k)k

2

�
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T
1(k) 0

0 �x2(k)�x
T
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��
; (23)

and Eqs. (11) - (15) are assumed to be satis�ed. Equa-
tion (21) indicates that the steady-state solutions of
�h1(k) and �h2(k) are independent of other channel sig-

nals, while those of ĥ1(k) and ĥ2(k) are a�ected by the
cross-correlation between x1(k) and x2(k). However, the
convergence speed of �h1(k) and �h2(k) may still be slow,
because the maximum eigenvalue of �2 �R is approxi-
mately �2 times smaller than that of R, where � is
smaller than 1, e.g. � = 0:2. A technique to improve
such a slow convergence was proposed in Ref. [7]. It

is based on a power-normalization of each channel sig-
nal. Before applying it to our case, we note that it
guarantees the adaptive �lters will converge to their
true solutions only if the inter-channel independence is
held. Thus, the update equations are modi�ed as�
ĥ1(k+1)

ĥ2(k+1)

�
=

�
ĥ1(k)

ĥ2(k)

�
+

�e(k)

2(kx1(k)k
2+kx2(k)k

2)

�
x1(k)
x2(k)

�
; (24)

�
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�
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�
�h1(k)
�h2(k)

�
+

��e(k)

2�2(kx1(k)k
2+kx2(k)k

2)

�
��x1(k)
��x2(k)

�
; (25)

where � is a parameter for relaxation. In this case, the
covariance matrix R00 becomes

R
00 =

1

2

�
R 0

0 � �R

�
: (26)

Since � can be much larger than �2, the convergence
speeds of �h1(k) and �h2(k) can be improved.

4. COMPUTER SIMULATIONS

4.1. Independence of processed signals

We con�rm how well f1 and f2 described in Eqs. (16)
and (19) satisfy the conditions mentioned in 3.2, by
calculating the 80000-sample-time averaged cross-
correlation functions r0

f1f2(n), r0

f1x1(n), and r0

f2x2(n).
The signals x1(k) and x2(k) were made from one-channel
signal x(k) by convolving 2000 samples each of two dif-
ferent impulse responses measured in our conference
room at an 8 kHz sampling rate. White Gaussian noise
and Japanese male speech at the 8 kHz sampling rate
were used for the signal x(k). Table 1 shows the max-
imum amplitude of each normalized cross-correlation
function for n = �2000 to 2000. Comparing r0

x1x2(n),
which corresponds to the cross-correlation function be-
tween x1(k) and x2(k), we found that r0

f1f2(n), r
0

f1x1(n),
and r0

f2x2(n) were su�cient small.

Table 1: Maximum amplitude of normalized cross-

correlation functions (�2000 � n � 2000).

White Gaussian Japanese speech
r0

f1f2(n) 0.010 0.030
r0

f1x1(n) 0.007 0.035

r0

f2x2(n) 0.016 0.045
r0

x1x2(n) 0.752 0.787

4.2. Convergence of adaptive �lters

We show here the convergence characteristic of each
adaptive �lter updated by using Eqs. (24) and (25).
The true echo path impulse responses h1(k) and h2(k)
were measured in a conference room at the 8 kHz sam-
pling rate and truncated at 1000 samples. The func-
tions f1 and f2 were chosen as Eqs. (16) and (19). The



input stereo signals were those mentioned in 4.1. Each
of the adaptive �lters ĥ1(k), ĥ2(k), �h1(k), and �h2(k) had
1000 taps. The ambient noise was added to the echo
y(k) to achieve a 30 dB SNR. The parameters were
� = 0:2, � = 0:7, and � = 0:5. Then, the adaptive �lter
coe�cient error convergences were evaluated for inputs
of the white Gaussian noise (Fig. 3) and the Japanese
male speech (Fig. 4). In both �gures, the errors be-

tween [hT1 (k);h
T
2 (k)]

T and (a) [ĥT1 (k); ĥ
T
2 (k)]

T (proposed),

(b) [�hT1 (k); �h
T
2 (k)]

T (proposed), and (c) [ĥT1 (k); ĥ
T
2 (k)]

T

(conventional (Fig. 1) with NLMS) are compared. Note
that, for the speech inputs, the coe�cient errors were
calculated after weighting by the averaged speech sig-
nal spectrum. These results show that the exclusive
adaptive �lters �h1(k) and �h2(k) quickly converge to the
true solutions.

5. CONCLUSION

We have proposed a new con�guration for a stereo echo
canceller with nonlinear pre-processing. In this con�g-
uration, the nonlinearly processed signals are input to
the exclusive adaptive �lters arranged for them. By
choosing nonlinear functions in the pre-processor to
generate uncorrelated signals from input stereo signals,
the exclusive adaptive �lters converge to the true solu-
tions without su�ering from cross-correlation between
the original stereo signals.
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