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ABSTRACT

It is a standard result that a finite impulse response channel of
lengthL can be uniquely identified by feeding in a known (and
persistently exciting) sequence of2L� 1 consecutive data points.
Equivalently, given only2L� 2 consecutive data points, the chan-
nel can be uniquely identified up to a multiplicative constant. This
paper significantly extends the identifiability criterion to the case
when the known inputs are non-consecutively located. It is ar-
gued that by introducing2L � 1 non-consecutively spaced zeros
into the input stream, for almost all input sequences, the channel
can be uniquely identified up to a multiplicative constant. Fur-
thermore, the result can be extended to the case when the known
inputs are non-zero, in which case the channel can almost always
be identified uniquely. To arrive at these results, general properties
of systems of polynomial equations are derived. These properties
do not seem to have appeared in the literature before.
Key words: Algebraic geometry, Commutative algebra, Polyno-
mial equations, Semi-blind identification, Finite impulse response
channels.

1. INTRODUCTION

The identification of an FIR (finite impulse response) channel is
a fundamental problem in signal processing. Identification of the
impulse response of the channel is typically based on the knowl-
edge of the output of the channel, the length of the channel, and
on some known property of the input to the channel. The type of
identification depends upon which property of the input signal is
known. A review of blind identification techniques is given in [1],
while a fast algorithm for blind identification is given in [5].

Recently, in [4], the input sequence was broken up into fixed
length blocks, and a zero appended to each block. These added
zeros allowed the input signal to be treated in a stochastic frame-
work. (It was shown that the input was cyclostationary.) It was
proved that asymptotically, as the number of blocks goes to infin-
ity, the channel can be identified up to a multiplicative constant.
The present paper considers the same problem in a deterministic
framework, and shows that only a finite number of blocks are re-
quired to uniquely identify the channel up to a multiplicative con-
stant.

In the deterministic framework, the semi-blind identification
problem corresponds to solving a system of polynomial equations.
The relevant areas of mathematics which extensively study poly-
nomial equations are commutative algebra and algebraic geometry.
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From a practical point of view, solving systems of polynomial
equations has been extensively studied; see for example “elimina-
tion theory” in [3]. However, the main theoretical result, Theo-
rem 1, has not (to our knowledge) appeared in the literature previ-
ously, presumably due to the fact that the specific problem has not
been of great relevance to mathematicians.

Section 2 describes the semi-blind identification problem and
gives an example. After background material is presented in Sec-
tion 3, the main results of this paper are given in Section 4. Further
work is briefly mentioned in Section 5.

2. SEMI-BLIND IDENTIFICATION

The aim of semi-blind identification is to determine the finite im-
pulse response (FIR) channel based on the channel output and par-
tial knowledge of the channel input. For ease of presentation, it is
assumed that everyT th input (T � 2) is zero. These zero inputs
are referred to as non-consecutive training data.

Denote the input sequence by� � � ; x�1; x0; x1; � � � ; the out-
put sequence byy1; y2; � � � ; and the channel byh0; h1; � � � ; hL�1,
whereL is the length of the channel. The input, output and channel
coefficients are all sequences of complex numbers. For mathemat-
ical convenience, it is assumed thath0 = 1. (With zero valued
training data, the channel can only be identified up to a multiplica-
tive constant. Therefore, the value ofh0 (which is assumed non-
zero) can be arbitrarily chosen.)

The input and output are related by theN equations:

yn =

L�1X
k=0

hkxn�k; n = 1; � � � ; N (1)

The training data equations are:

xT = x2T = x3T = � � � = 0 (2)

By choosingN = (2L � 2)T , (1) and (2) correspond toN +
(2L� 2) equations inN + (2L� 2) unknowns, and by choosing
N = (2L�1)T , (1) and (2) correspond toN+(2L�1) equations
in N + (2L� 2) unknowns. In the former case, there aren equa-
tions inn unknowns, and in the latter case, with one extra training
data, there aren+1 equations inn unknowns. Furthermore, these
equations are all polynomials.
Example: Consider the simple caseL = 2 andT = 3. The
channel equations (1) become, after substituting the training data
(2) (i.e.,x3 = x6 = 0):

y1 = x1 + hx0 y2 = x2 + hx1 y3 = hx2

y4 = x4 y5 = x5 + hx4 y6 = hx5 (3)



There are 6 equations and 6 unknowns (h; x0; x1; x2; x4; x5). By
eliminatingx4; x5 in (3), the polynomialy4h2 � y5h + y6 = 0
results, showing that there are in general two different values ofh.

Three important points can be made. 1) Unlike the linear case
whenn equations inn unknowns uniquely determine a point, in
the polynomial case, a finite number of solutions are possible. 2)
For some exceptional values of the input, there might be an infinite
number of solutions. In the example above, ify4 = y5 = 0, h can
be arbitrary. Therefore, any general theory must take into account
these exceptions. 3) The equations in (3) are bilinear.

If three more outputs are observed, i.e.,y7 = x7; y8 = x8 +
hx7; y9 = hx8, then a second quadratic inh can be obtained,
namelyy7h2 � y8h+ y9 = 0.

Note that if the inputs are chosen at random, then the outputs
are random too. In particular then, the equationsy4h

2�y5h+y6 =
0 andy7h2 � y8h+ y9 = 0 are “random”, and so intuitively, with
probability one, they will have only one solution (remember that
the output is such that at least one solution must exist).
Summary of key results:The example given above illustrates the
main results this paper attempts to prove. Assume that the input
sequence is random. By using2L � 2 training data, there aren
polynomial equations inn variables, and hence, with probability
one, a finite number of solutions. By using2L � 1 training data,
there aren + 1 polynomial equations inn variables, and hence,
with probability one, a unique solution.

3. REVIEW OF BACKGROUND MATERIAL

This section briefly outlines the notation and results required from
algebraic geometry and commutative algebra. The book [3] is rec-
ommended as an easy yet comprehensive introduction to algebraic
geometry. Other references include [6, 8]. For commutative alge-
bra, the book [2] is recommended.

This paper uses the wordvariety to mean an affine variety
over the algebraically closed fieldCn, for some positive integern.
A setV of points inCn is thus a variety if it corresponds to the set
of all solutions of a finite system of polynomials. To be precise,
define the set

V (f1; � � � ; fr) =f(x1; � � � ; xn) 2 Cn : f1(x1; � � � ; xn) = 0;

� � � ; fr(x1; � � � ; xn) = 0g (4)

to be the set of all solutions of ther polynomialsf1; � � � ; fr 2
C[x1; � � � ; xn], where the notationC[x1; � � � ; xn] represents the
polynomial ring consisting of all polynomials with complex co-
efficients in then variablesx1; � � � ; xn. Then a setV � Cn is
a variety if it can be written asV = V (f1; � � � ; fr) for somer
polynomialsf1; � � � ; fr 2 C[x1; � � � ; xn].

TheZariski topology is the topology induced onCn by defin-
ing a set to be closed iff it is a variety. The worddenseis taken
with respect to the Zariski topology, i.e., a set is dense inV iff the
smallest variety containing the set isV . The closure of a setE
(denotedE) is therefore the smallest variety containingE.

The union of a finite number of varieties is again a variety. The
intersection of an arbitrary number of varieties is again a variety. A
variety isirreducible if it cannot be split into two smaller varieties,
i.e.,V � Cn is irreducible ifV = V1 [ V2 implies eitherV1 = V

or V2 = V .
A variety V � Cn can always bedecomposedinto a finite

number ofirreducible components, i.e.,V = V1[� � �[Vk where
V1; � � � ; Vk are irreducible varieties, andVi 6� Vj for i 6= j. (The

decomposition is unique up to the order in whichV1; � � � ; Vk are
written.)

The dimension of a variety can be defined in a number of
equivalent ways. A precise definition is outside the scope of this
paper; see [3].

Proposition 1 Let W be a subvariety of an irreducible variety
V (i.e., W � V ). ThendimW < dimV iff W is a proper
subvariety (i.e.,W 6= V ).

Remark: If the varietyV is reducible, Proposition 1 can be used
in conjunction with the fact that ifV = V1 [ V2, thendimV =
max(dimV1; dimV2).

4. MAIN RESULTS

In Section 2 it was shown that in the semi-blind identification prob-
lem, the channel is identified by solving a system of polynomial
equations. If these equations have a unique solution, then the chan-
nel is uniquely identified. Therefore, this section primarily studies
the number of solutions of a system of polynomial equations.

A property can hold “almost everywhere” rather than every-
where. Definition 1 below gives an appropriate definition of “al-
most everywhere” based on the dimension of a variety. To visu-
alise the definition, recall that a point, a line, and a plane have
dimension 0, 1 and 2 respectively.

Definition 1 A property will be said to hold foralmost all points
of a varietyV if the set of points for which the property does not
hold (called theexceptional points) is contained in a subvariety
W of V with a lower dimension, i.e., ifdimW < dimV . When
the varietyV is understood from the context, the property will be
more succintly said to holdalmost everywhere.

Remark: Proposition 1 provides a convenient criterion for deter-
mining if a property holds almost everywhere.

The definition given above is consistent with the probabilistic
(measure-theoretic) notion of “with probability one”. Lemma 1
below shows that if a point is chosen at random, with probability
one, it will not be an exceptional point.

Lemma 1 Let [x1; � � � ; xm]0 be a vector of real random vari-
ables. Assume each random variable is absolutely continuous and
is independent. Then for any real vector[y1; � � � ; ym]0 (possibly
depending on[x1; � � � ; xm]0), the pointz = [x1+ jy1; � � � ; xm+
jym]0 2 Cm lies in a proper subvariety ofCm with probability
zero.

Remark: The assumption of independence can be relaxed. It suf-
fices that the probability density of each random variable condi-
tioned on the others is absolutely continuous. For example,z can
be a Gaussian random vector with arbitrary (but non-singular) cor-
relation.

Proposition 2 below highlights key properties of polynomial
mappings. Note that the notion of almost everywhere is preserved
by inverse polynomial mappings.

Proposition 2 The inverse image of a closed set under a polyno-
mial mapping is closed. Furthermore, the inverse mapping is or-
der preserving. Specifically, for anyf1; � � � ; fr 2 C[x1; � � � ; xn],



define the polynomial mappingF fromCn to Cr by

F (x1; � � � ; xn) = (f1(x1; � � � ; xn); � � � ; fr(x1; � � � ; xn)) (5)

For any setV � Cn, define the image ofV as

F (V ) =f(c1; � � � ; cr) 2 Cr : (c1; � � � ; cr) = F (x1; � � � ; xn);

(x1; � � � ; xn) 2 V g (6)

For any setW � Cr, define the inverse image ofW as

F
�1(W ) = f(x1; � � � ; xn) 2 Cn : F (x1; � � � ; xn) 2 Wg (7)

Then 1) for any varietyW � Cr, F�1(W ) is a variety; 2) for any
varietiesW 0 ( W � Cr, F�1(W 0) � F�1(W ); and 3) for any
varietyV � Cn, if W ( F (V ), thenF�1(W ) ( V .

Before the main theorems concerning systems of polynomial
equations are given, the term “algebraic dependence” is defined.

Definition 2 Ther polynomialsf1; � � � ; fr 2 C[x1; � � � ; xn] are
said to bealgebraically dependentif there exists a non-zero poly-
nomialg 2 C[f1; � � � ; fr] such that8(x1; � � � ; xn) 2 Cn,

g(f1(x1; � � � ; xn); � � � ; fr(x1; � � � ; xn)) = 0 (8)

(This is succintly written asg(f1; � � � ; fr) � 0.) Otherwise, the
equations are said to bealgebraically independent.

Remark: It is straightforward to prove that for any complex con-
stantsci, i = 1; � � � ; r, the polynomialsfi � ci are algebraically
independent iff thefi are themselves algebraically independent.
Also, any set ofn+1 polynomial equations inC[x1; � � � ; xn] (i.e.,
in n variables) are dependent.

Theorem 1 gives a general statement concerning the number
of solutions of a set ofn polynomial equations inn unknowns.

Theorem 1 Givenn polynomialsf1; � � � ; fn 2 C[x1; � � � ; xn],
consider the system of equationsfi(x1; � � � ; xn) = ci for arbi-
trary complex constantsci (i = 1; � � � ; n). LetC � Cn denote
the image of thefi, i.e.,C = F (Cn) (c.f., (6)). Then:

1. C is an irreducible variety, whereC denotes the Zariski
closure.

2. Thefi are algebraically independent iffC = Cn.

3. If the equationsfi are algebraically independent, then for
almost all(c1; � � � ; cn) 2 C, fi = ci, i = 1; � � � ; n has a
finite number of solutions.

4. If the equationsfi are algebraically dependent, then for al-
most all(c1; � � � ; cn) 2 C (in fact for all (c1; � � � ; cn) 2
C), fi = ci, i = 1; � � � ; n has an infinite number of solu-
tions.

Remark 1: While Theorem 1 should not be a surprising result to
an expert in commutative algebra, we have been unable to find any
statement of it in the literature. Furthermore, it is not straightfor-
ward to prove Theorem 1.
Remark 2: The example below shows hown independent equa-
tions can define a variety having an infinite number of solutions.
Let f1(x1; x2) = x1(x1 � x2) andf2(x1; x2) = x2(x1 � x2).
Then f1 and f2 are independent. [The Jacobian (see below) is
jJ(f1; f2)j = 2(x1 � x2)

2 6� 0 and so, by Theorem 2,f1 andf2
are independent.] However,V (f1; f2) = V (x1 � x2) and thus
has an infinite number of solutions.

By applying Proposition 2 to Theorem 1, Lemma 2 results.

Lemma 2 Consider then polynomial equationsfi = ci in then
complex variablesx1; � � � ; xn for arbitrary complex constantsci.
The spaceCn can be partitioned into two disjoint sets,Xf andXi.
A point(p1; � � � ; pn) 2 Cn lies inXf if there are a finite number
of solutions(x1; � � � ; xn) to then equationsfi(x1; � � � ; xn) =
fi(p1; � � � ; pn), i = 1; � � � ; n. Otherwise, the point(p1; � � � ; pn)
lies inXi (i.e., infinite number of solutions). Then almost all points
of Cn lie in the setXf if and only if thefi are algebraically inde-
pendent.

Before Lemma 2 can be applied to the semi-blind identifica-
tion problem, a test for determining if a set of equations are in-
dependent is required. Combining ideas from both analytic and
algebraic geometry, the criterion given in Theorem 2 was devised.
It is based upon the Jacobian matrix, which is now defined:

Definition 3 Givenr polynomialsf1; � � � ; fr 2 C[x1; � � � ; xn],
define theJacobian matrix to be ther�nmatrix of partial deriva-
tives:

J(f1; � � � ; fr) =

2
664

@f1
@x1

� � � @f1
@xn

...
...

@fr
@x1

� � � @fr
@xn

3
775 (9)

Evaluating this matrix atp 2 Cn gives a matrix of numbers de-
noted byJp(f1; � � � ; fr). TheJacobian is the determinant of the
Jacobian matrix, writtenjJ j. (Clearly, the Jacobian is only de-
fined if the Jacobian matrix is square, i.e.,r = n.) Note that the
Jacobian is a polynomial inC[x1; � � � ; xn].

Theorem 2 Then polynomialsfi(x1; � � � ; xn), i = 1; � � � ; n in
then complex variablesx1; � � � ; xn are algebraically independent
if then� n Jacobian matrixJ(f1; � � � ; fn) (defined in (9)) is not
everywhere singular, i.e., if there exists a pointp 2 Cn such that
jJp(f1; � � � ; fn)j 6= 0.

At this point, the following theorem can be given, ensuring
that for 2L � 2 known inputs, the channel (of length at mostL)
can be identified up to at most a finite number of possibilities for
almost all input sequences. Applying Lemma 1, this says that if the
input is chosen at random, then with probability one the channel
can be identified up to a finite number of possibilities.

Theorem 3 By choosingN = (2L�2)T , the semi-blind identifi-
cation equations (1) and (2) will have a finite number of solutions
for almost all combinations of input sequences and channels.

PROOF. TheN equations (1), after substituting in (2), have
the following Jacobian matrix (L = 2, T = 3 case presented for
concreteness):

J(f1; � � � ; f6) =

2
666664

h 1 0 0 0 x0
0 h 1 0 0 x1
0 0 h 0 0 x2
0 0 0 1 0 0
0 0 0 h 1 x4
0 0 0 0 h x5

3
777775

(10)

Since there exists a value of(h; x0; x1; x2; x4; x5) for which J
is non-singular, by Theorem 2, theN equations are algebraically
independent. By Lemma 2, for almost all values of the channel and



input(h; x0; x1; x2; x4; x5), there are a finite number of solutions.
2

The following conjecture is also given. It is based on the fol-
lowing intuitive argument1: We conjecture that a set of polyno-
mials inC[x1; � � � ; xn] has a unique solution almost everywhere if
and only if the field generated by the polynomials is the same as the
fieldC(x1; � � � ; xn). Furthermore, givenn independent equations,
they generate a field, sayF , with the same transcendence degree
asC(x1; � � � ; xn), namelyn. Therefore, the fieldC(x1; � � � ; xn)
is a finite extension ofF . It is well known that in this case, only a
single polynomialf need be added toF to obtainC(x1; � � � ; xn).
Furthermore, and roughly speaking, almost anyf will do.

Conjecture 1 By choosingN = (2L� 1)T , the semi-blind iden-
tification equations (1) and (2) will have a unique solution for al-
most all combinations of input sequences and channels.

5. DISCUSSION OF FUTURE WORK

For reasons of space and clarity, this paper has only considered
the case when the training data is zero and is periodically spaced.
It should be clear that the actual training data used is unimpor-
tant; the channel can still be identified with probability one. Fur-
thermore, with non-zero training data, it is possible to identify the
channel completely, rather than up to a multiplicative constant.

Symbolic mathematics packages provide routines for solving
systems of polynomial equations. Elimination theory can be ap-
plied to specific cases to determine what sequences of inputs can-
not be identified etc.

In terms of actually finding the channel, we remark that due to
ill-conditioning, it is not recommended that the semi-blind iden-
tification problem be solved by elimination. A recent paper [7]
presents a more stable technique for solving a system of polyno-
mial equations.

Finally, it is hoped that we are able to rigorously prove Con-
jecture 1 in the near future.

6. CONCLUSION

This paper has three main contributions. Firstly, it has placed the
semi-blind identification problem in an algebraic framework. This
allows existing knowledge of polynomial equations found in the
mathematics literature to be applied to the engineering problem of
semi-blind identification. Secondly, non-trivial theorems concern-
ing the theoretical nature of systems of polynomial equations have
been derived (most significantly Theorem 1). Thirdly, by apply-
ing the theorems to the semi-blind identification problem, it was
shown that an FIR channel can be semi-blindly identified using
only a finite number of training data. As outlined in Section 5, the
methods used in this paper can be used to answer other questions
about semi-blind identification.
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