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ABSTRACT

We consider the problem of computing the maximum
likelihood estimates of the reection coe�cients of a
discrete 1-D layered medium from noisy observations of
its impulse reection response. We have side informa-
tion in that a known subset of the reection coe�cients
are known to be zero; this knowledge could come from
either a priori knowledge of a homogeneous subregion
inside the scattering medium, or from a thresholding
operation in which noisy reconstructed reection coe�-
cients with absolute values below a threshold are known
to be zero. Our procedure is simple, noniterative, and
requires only solutions of systems of linear equations.
Numerical examples are provided which demonstrate
not only the operation of the algorithm, but also that
the side information improves the reconstruction of un-
constrained reection coe�cients as well as constrained
ones, due to the nonlinearity of the problem.

1. INTRODUCTION

The one-dimensional inverse scattering problem for a
discrete layered mediumprobed with an impulsive plane
wave at normal incidence arises in many areas. For ex-
ample, the radar reection from a strati�ed lossless di-
electric medium (such as an airplane skin) can be used
to reconstruct the permittivity of the medium in each
layer if the magnetic permeability is assumed to be con-
stant. Another example is the well-known problem of
reconstructing a lossless layered acoustic medium from
its impulse reection response.

The goal of this paper is to present a simple algo-
rithm that computes the constrained maximum-likelihood
estimate of the reection coe�cients of a discrete lay-
ered medium, frommeasurements of the impulse reec-
tion response to which a Gaussian noise process with
known mean and covariance has been added. The side
information consists of a subset of the reection coef-
�cients whose values are assumed to be known. Our
treatment of this problem in the exact case (all multi-
ple reections are included; no approximations are used
other than low noise level) seems to be new.

It is important to note that due to the nonlinear-
ity of the exact (all multiple reections included) in-
verse scattering problem, we cannot solve this prob-
lem by simply setting the noisy reconstructed reec-
tion coe�cients to their known values. We could do
this in the Born approximation (linearization of the
inverse scattering problem), but the nonlinearity im-
plies that alteration of (interface) reection coe�cients
will produce a complicated alteration of the impulse
reection response. Furthermore, two almost-identical
impulse reection responses can arise from two very-
di�erent sequences of (interface) reection coe�cients.
We show using examples that it is necessary to alter
some of the non-constrained reection coe�cients, as
well as the constrained ones, to obtain the maximum-
likelihood estimate. We also show that the side infor-
mation improves reconstruction of unconstrained reec-
tion coe�cients as well as constrained ones, due to the
nonlinearity of the inverse scattering problem.

2. PROBLEM FORMULATION

Wave propagation in layered media is described by
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where the reection coe�cient rn =
Zn�Zn+1

Zn+Zn+1
, the trans-

mission coe�cient tn =
p
1� r2n and dn(i) and un(i)

are the downgoing and upgoing waves at time i just
below the nth interface. The physical interpretation of
dn(i) and un(i) as energy-normalized waves being scat-
tered into each other should be apparent. For details
about (2.1) and its derivation see [1]-[3].

The mediumhas a free (perfectly reecting) surface;
this is reasonable since in many applications there is a
huge impedance mismatch between the medium and its
exterior (e.g. between a solid and air). The medium
is probed by an impulse �n, resulting in the medium's
impulse reection response kn:

d0(n) = �n + kn; u0(n) = kn: (2:2)



We assume we know that rni = 0 for some known
depths n1; n2 : : : nM . Such information could come ei-
ther from previous knowledge of a homogeneous slab
inside the layered medium, or from thresholding small
noisy estimates of rn (if the noisy reconstructed jrnj <
� for some threshold � set rn = 0). Such thresholding
strategies are common in signal processing.

We also assume we are given noisy observations

yn = kn + vn; 1 � n � N = medium thickness (2:3)

where vn is a Gaussian noise process with known mean
mn and covariance �i;j = E[(vi�mi)(vj �mj)]. Since
we can immediately convert the non-zero-mean prob-
lem into a zero-mean problem by replacing yn with
yn � mn we assume without loss of generality in the
sequel that mn = 0. We also assume that the signal-
to-noise level is high, i.e. k2n >> �n;n = �2n.

The goal is to reconstruct the maximum-likelihood
estimates fr̂i; 1 � i � Ng of the rn from the noisy
observations fyi; 1 � i � Ng of the impulse reection
response fki; 1 � i � Ng, subject to the constraint of
the side information rni = 0 for some known depths
n1; n2 : : : nM .

3. PROBLEM SOLUTION

3.1. Log-likelihood function

De�ne vectors ~y = [y1; y2 : : : yN ]
T , ~v = [v1; v2 : : : vN ]

T ,
~k = [k1; k2 : : : kN ]T , and ~r = [r1; r2 : : : rN ]T . Also de-
�ne symmetric Toeplitz matrices Y; V;K whose �rst
columns are ~y;~v;~k, respectively. Also de�ne the co-
variance matrix � whose (i; j)th element is �i;j . Let

r̂n; k̂n; v̂n be maximumlikelihood estimates of rn; kn; vn,
and p~x(~x) be the probability density function for ~x.

The log-likelihood function is logp~yj~r(~yj~r)

= log
1

(2�)N=2
p
j�j

exp[�
1

2
(~y � ~k(~r))T��1(~y � ~k(~r))]

where ~k(~r) is the nonlinear functional relation between
the rn and the kn speci�ed by (2.1) and (2.2). That

is, ~k is the reection response resulting from reection
coe�cients ~r.

The maximum likelihood estimate ~̂r of ~r is ~̂r =

argmax

~r
log p~yj~r(~yj~r) =

argmin

~r
(~y�~k(~r))T��1(~y�~k(~r)):

Hence we must determine the ~r that minimizes the
least-squares norm with respect to covariance matrix �
between the resulting ~k(~r) and the given data ~y. That
is, we must �nd the smallest perturbation of the given
~y consistent with the nonlinear constraints rni = 0. It
is not at all obvious how to do this at this point.

3.2. Use of Toeplitz systems of equations

The key to solving easily this nonlinearly-constrained
least-squares minimization problem is to note that we
can solve the 1-D discrete inverse scattering problem
de�ned by (2.1) and (2.2) by solving the Toeplitz sys-
tem of equations [2]-[5]
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for n = 1; 2 : : :N and noting that rn = an(n)
Qn�1

i=1 ti
[1]-[3]. These nested Toeplitz systems of equations can
easily be solved using the Levinson algorithm.

Write (3.3) as K~a = ~t where ~a = [an(0) : : : an(n)]
T

and ~t = [1; 0 : : :0]T . Also write (2.3) as Y = K + V .
Here Y;K; V are submatrices of the Toeplitz matrices
de�ned above (use n=current layer instead of N=total
number of layers). When we attempt to reconstruct
the medium from the noisy observations yn, we obtain
Y ~~a = ~t, where tildes denote quantities associated with
the noisy, unconstrained data.

Now we can proceed. We have

K~a = ~t! ~a = K�1~t = (Y �V )�1~t � (Y �1+Y �1V Y �1)~t
(3:4)

where we have used the approximation

(Y � V )�1 = (I � Y �1V )�1Y �1

= (I+Y �1V +(Y �1V )2+: : :)Y �1 � Y �1+Y �1V Y �1:
(3:5)

We can expand (I�Y �1V )�1 in a power series in Y �1V
provided Y �1V < I ! V < Y where A < B means
A� B is positive de�nite. We can truncate the power
series to one term provided V << Y , which is true
provided the signal-to-noise ratio is large.

This series truncation is the only assumption re-
quired in our work. As long as V < Y (which will
surely be the case in practice) we can, if necessary,
iterate our procedure. Since each iteration produces
a consistent fkn; rng, we can repeat the procedure as
many times as desired, with the accuracy improving
since the maximum singular value of V �1Y is getting
smaller. In practice we have found one or two iterations
to be su�cient to satisfy the constraints. We now have

~a = (Y �1 + Y �1V Y �1)~t = ~~a+ Y �1V ~~a: (3:6)

Let J be an exchange matrix with ones on the main
antidiagonal and zeros elsewhere. Recall Y = JY J for
symmetric Toeplitz matrix. Premultiplying [0; 0 : : :1] =
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(3:7)
since the side information is that rn = 0 for these n.

3.3. Linear system of equations

Now rewrite (3.7) as a linear system of equations

W~v = �~~r (3:8)

where~~r is a subvector of~~r consisting of the n1; n2 : : :nM
elements of ~~r and W is composed of known elements
of ~~a. From (2.3) and the fact that maximum likeli-
hood estimation commutes with nonlinear operations
[6], it is clear that estimating rn from yn is equivalent
to estimating kn from yn, which in turn is equivalent
to estimating vn = yn � kn from yn.

The linear system of equations (3.8) is clearly un-
derdetermined. But it does express the side informa-
tion in the form of a linear system of equations in ~v.
We know we wish to minimize (3.2) subject to this
constraint. This shows immediately that we want the
least-squares solution to (3.8), speci�cally the solution
to (3.8) minimizing the norm de�ned in (3.2). This is

~̂v = ��WT (W�WT )�1~~r (3:9)

which can easily be computed since the size of the sys-
tem of equations is the numberM << N of constrained
values of rn.

In practice the additive Gaussian noise process will
often be white. In this case � = DIAG[�2] and (3.8)
simpli�es to the pseudoinverse

~̂v = �WT (WW T )�1~~r: (3:10)

Note that if there is no noise in the data then the re-
constructed ~rn will all be zero, so that ~̂v will properly
be a zero vector.

3.4. Summary of overall procedure

1. Run the Levinson algorithm to solve the nested
systems of Toeplitz equations (3.3) using the noisy
observations yn instead of kn. This results in
f~an(i); i = 1 : : :n; n = 1 : : :Ng and ~rn; n = 1 : : :n;

~rn = an(n)
Qn�1

i=1
~ti is computed recursively.

2. Compute the pseudoinverse in (3.9) or (3.10), where
W is determined from the quantities computed
using the Levinson algorithmby rearranging (3.7).
The solution is the maximum likelihood estimate
of the additive noise vn.

3. Compute k̂n = yn � v̂n where v̂n is from the so-
lution to (3.9) or (3.10). k̂n is the maximum like-
lihood estimate of kn.

4. Run the Levinson algorithm on k̂n. This com-
putes the maximum likelihood estimates r̂n of rn
subject to the constraint rni = 0.

4. NUMERICAL EXAMPLES

The example is a continuous 1-D inverse scattering
problem with r(x) a realization of a 1=f fractal pro-
cess except for 0:75 < x < 1:5 where r(x) was set to
zero. The continuous problem was solved by discretiz-
ing the depth interval 0 < x < 3 to 128 discrete points
and running the discrete algorithm described above.
The "true" r(x) and corresponding "true" impulse re-
ection response k(t) are shown in Figs. 1b and 1a,
respectively; note r(x) = 0 for 0:75 < x < 1:5. Zero-
mean white Gaussian noise v(t) was added to k(t) to
produce the noisy observation y(t) in Fig. 1c. Our
given information consists of y(t) and r(x) = 0 for
0:75 < x < 1:5.

The r(x) reconstructed directly from y(t) without
using the side information is shown in Fig. 1d. Note
that although y(t) is not that noisy an observation of
k(t) (compare Figs. 1a and 1c), the reconstructed r(x)
shown in Fig. 1d is quite di�erent from the true r(x).
Again, it is hard to see from Fig. 1d that r(x) should
be zero for 0:75 < x < 1:5, even though we know this.

Our procedure was run twice on the noisy data y(t).
The results of the �rst run are shown in Figs. 1e and
1f. Note that in Fig. 1f the constraint is almost sat-
is�ed. Also note that the reconstruction of the uncon-

strained r(x) outside the range 0:75 < x < 1:5 is im-
proved, especially for 0:5 < x < 0:75 and 1:5 < x < 2:5.
This shows that the reconstruction of the unconstrained
r(x), as well as the constrained r(x), is improved by our
procedure. This is due to the nonlinearity of the in-
verse scattering problem: r(x) a�ects not only k(x) (as
it does in the Born approximation) but all k(t); t > x
due to the multiple scattering, so di�erent ranges of x
and t a�ect each other.

The results of the second run are shown in Figs.
1g and 1h. There is virtually no change from Figs.
1e and 1f, except that the constraint is satis�ed even
more closely. This again suggests that a single run of
the algorithm su�ces.
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