
IMPROVING VOCABULARY INDEPENDENT HMM DECODING RESULTS BY USING
THE DYNAMICALLY EXPANDING CONTEXT

Mikko Kurimo

Neural Networks Research Centre, Helsinki University of Technology
P.O.Box 2200, FIN-02015 HUT, Finland

mikko.kurimo@hut.fi

ABSTRACT

A method is presented to correct phoneme strings produced by a
vocabulary independent speech recognizer. The method first ex-
tracts theN best matching result strings using mixture density
hidden Markov models (HMMs) trained by neural networks. Then
the strings are corrected by the rules generated automatically by
the Dynamically Expanding Context (DEC). Finally, the corrected
string candidates and the extra alternatives proposed by the DEC
are ranked according to the likelihood score of the best HMM path
to generate the obtained string. The experiments show thatN need
not be very large and the method is able to decrease recognition
errors from a test data that even has no common words with the
training data of the speech recognizer.

1. INTRODUCTION

The use of hidden Markov models (HMMs) [7] is nowadays clearly
the dominant trend in the automatic speech recognition (ASR).
The HMMs connect two contributing stochastic processes, the pro-
duction of the signal state sequence and the generation of the acous-
tic features in each state, into a single probabilistic framework.
Using models corresponding to phonemes, the probabilities of dif-
ferent phoneme sequences can be estimated and compared after
the extraction of the short-time feature vectors from the signal.
The HMMs are normally applied to generate the most probable
phoneme string or to select it from a given set of alternatives.

If the recognition task is to transcribe the speech into phoneme
sequences that are not limited to any vocabulary, there is nor-
mally not much to be done to correct the occurring recognition
errors. Some rules for certain common differences between the
spoken and written text can be checked, but there is no general
way to correct misspelled text, because there would be several al-
ternatives and actually, no list of acceptable words is available.
In [2] the Dynamically Expanding Context algorithm is suggested
to correct erroneous phoneme strings in the postprocessing stage
of a speech recognizer for unlimited vocabulary of Finnish using
context-dependent production rules. The method learns the rules
automatically from lists of source and target string pairs.

In many ASR applications well-defined vocabularies or gram-
matical constraints limit the variety of possible words and the struc-
ture in each utterance. To optimally select the best matching word
the information extracted from HMM decoding can includeN best
HMM strings (N > 1) and their current likelihoods. This HMM
information is then combined with the available additional infor-
mation in the postprocessing stage of the recognition process.

In this work the recognition task is the vocabulary independent
ASR. The objective is to improve the HMM result strings so that
the final result would be the best string that follows the DEC rules.
Since it would be difficult to bring the DEC rules directly into the
HMM decoding, the problem is approached by transforming all
the best HMM string candidates by the DEC and selecting the best
by computing the HMM scores for the obtained set of promising
valid strings (see Figure 1).

2. DYNAMICALLY EXPANDING CONTEXT

The Dynamically Expanding Context (DEC) [2] is a method to
generate context-dependent grammatical mappings. It has been
used, for example, as the postprocessing stage of a speech rec-
ognizer for unlimited vocabulary of Finnish [2, 3]. The rules are
generated automatically by comparing phoneme strings produced
by the speech recognizer with the corresponding lists of correct
words.

A production rule is a mapping from a string segmentA of the
source stringS into the corresponding segmentB of the trans-
formed stringT . The rule is applied, if the context segments
aroundA in S matches with the specifications of the rule. For
example, the recognizer might hear the Finnish diphthong /au/ as
/aou/ and so the transformation /aou/! /au/ should be included
into the rule set. The rule is then formed to always replace the
string segmenta(o)u by a()u, wherea andu denote the context
andA = (o) andB = (). The transformed result T of the whole
stringS is generated simply by concatenating all the transformed
segmentsB.

The DEC implements the idea of storing minimum amount of
context for each rule while keeping the productions unique. For
each segment the length of the context is the smallest possible one
without conflicts in the training sample set. A rule causes a con-
flict, if there are more than one possible transformation results for
the same segment and context.

2.1. The generation of the DEC rules

For the postprocessing of speech recognition results the possible
transformations between string segments are extracted from lists of
string pairs(S; T ) where the source stringS is the result string of
the recognizer and the target stringT is the corresponding correct
word from the dictated word list. The method applied to generate
the rules from the(S; T ) pairs is described here only briefly (for
more details c.f. [3]).

The processing of a sample pair(S; T ) begins by aligning the
corresponding segments inS andT . The alignment of the cor-



DEC
Multiple output

feature vectors
The sequence of

output strings
theN -best HMM

transformations

Extra DEC strings:T 0

1
; T 0

2
; : : :

Corrected strings:T1; T2; : : : ; TNStrings:S1; S2; : : : ; SN

Selection of

the HMM rescoring
the best string by

Recognition of
extraction
Feature

Figure 1: The stages of theN -best HMM-DEC decoding and the information that is transmitted between the stages.

rect and the erroneous string can often be done in several alterna-
tive ways. However, the correct alignment is most often the one
which introduces the smallest amount simple segment transitions.
This alignment is defined by minimizing the Levenshtein distance
(the sum of inserted, deleted and substituted segments) between
the strings. For example, for the string transformation /kolomä/
! /kolme/ (the number three in Finnish), the correct alignment
should give the segment transitions /o/! // and /ä/! /e/.

The production rules are first stored using a small context, e.g.
l(o)m! () for the given example. However, if a conflict is encoun-
tered, the rule is marked ambiguous and new rules are introduced
with a little longer context, e.g. ol(o)m! (). Thus the generation
of a new rule is always started by checking the conflicts against the
old rules.

It is often reasonable to set an application dependent upper
limit for the length of the context. To be sure that the DEC is
correct, the training data can be scanned a few times. The suffi-
cient number of iterations depends on the chosen maximal context
length. The theoretical upper limit is half of the number of possible
context expansions steps plus one [3].

2.2. Some problems in the training

In practice, one important problem in training the DEC is how to
obtain the enough long list of the string pairs(S; T ) to cover all the
main phoneme contexts where transformations may exist. Those
contexts should also appear often enough that all the expectable
transformations would emerge and could be adopted by the DEC.
In ASR this can be helped by selecting the dictated words so that
the number of phoneme combinations is somehow balanced. A
different data set not used in the training of the current HMMs
might reveal more variation to the DEC, but unfortunately, all
available training data are normally needed to train the HMMs.

Another problem is how to check that each obtained DEC rule
is defined by a context specific enough so that no correct string
outside the training material would get transformed to an incorrect
one. Due to the storage and collecting difficulties the training ma-
terial is normally so limited that such strings can always exist. In
this paper the DEC was additionally trained to form(T; T ) iden-
tity string pairs for some large enough written text corpus to ensure
that at least all segments in correct words will remain unchanged.

2.3. Finding the candidates of corrected strings

First the stringS is divided into a sequence of successive segments.
The DEC production rules are then sought for each segment. If no
matching rules are found, the segment is accepted to be correct as

such. If the matching rule is ambiguous, the context of the segment
is expanded and the search is continued to the next context level.
When a unique rule is encountered its outcome is concatenated to
the target string.

It is possible that the sequence of production rule expansions
found in the search end up to an ambiguous rule. To select the
best one from the available target segments, the majority voting
procedure described in [3] can be applied. In the current paper,
however, all the candidates are collected by duplicating the target
string whenever there is more than one possible output segments.
After the checking all the segments there may thus exist several
alternative candidates for the corrected string (see Figure 1).

3. N -BEST HMM

The conventional way to decode the sequence of feature vectors by
HMMs is to extract the most probable sequence of the model states
by using the Viterbi search. In ASR it is nowadays common (for
example, c.f. [1, 6]) that the calculation of the short-time prob-
abilities connecting each observed feature vector to each model
state will be the most time consuming part of the process. and the
Viterbi search by itself can be quite fast.

When the recognition result given by the HMMs are passed
to some further postprocessing transformations, it is possible that
the transformed result corresponds no longer the best most proba-
ble result in the sense that the HMM decoding result was selected.
For example, some rival HMM result that was maybe defeated by
a narrow margin might actually be closer to the correct result and
give a more probable result string in the postprocessing transfor-
mation. Another way to view this problem is to note that if the
HMM decoding is not the final stage of the recognition process, it
could be more robust to feed the next stage with several alterna-
tive strings instead of compressing all the classification informa-
tion into a single phoneme string.

Since it does not require any new computation of short-time
observation probabilities, the decoding ofN -best HMM strings
(N > 1) does not excessively increase the computational effort
of the recognition procedure. In fact, there are fastN -best search
algorithms, for example [8], which need only a relatively small
amount of extra computation compared to the best candidate Viterbi
search. TheN -best HMM decoding has long been used to provide
candidate words for various postprocessing systems. In this pa-
per it is applied is to generate candidate strings to be converted by
the DEC into correct words which are ranked by their best HMM
alignment scores (see Figure 1). The DEC only corrects the im-
proper segments in the decoded strings so the task of the HMM



decoding is to extract the most likely coarticulation and other er-
rors in order to inspire the most likely correct words. Analogous
situation is in the automatic correction of spelling errors, where,
for example, a rule-based system generates a whole set of close-by
correction candidates and then applies some matching measure to
select the most probable correct word [4].

4. THE FINAL RECOGNITION RESULT

The previous sections already described, how to generate a list of
possible output strings byN -best HMMs and a multiple output
DEC. At least one fundamental problem still exists: How to select
the correct output from that list?

If the task would include processing of further constraints based
on, for example, some grammatical or other knowledge of the pos-
sible words and their order, all the corrected strings could be fed
forward as such. In this paper, however, the task is to convert the
spoken utterances to the best matching phoneme strings not lim-
ited by any particular vocabulary or structure. The output string
should thus be the one that fits best to the feature vector sequence
using some applicable measure.

Since the short-time observation probabilities for HMMs have
already been computed, it is a rather quick and straight-forward
procedure to find the best time alignment of the HMMs for each
corrected string. Then the likelihood score of this best time align-
ment can act as the comparison measure between the candidate
strings, just as if we were selecting the most probable decoding in
a normal HMM.

5. EXPERIMENTS

The recognition experiments were made using the speech recogni-
tion system based on mixture density HMMs [5] trained by Self-
Organized Maps [3] and Segmental LVQ3 as described in [6]. The
basic feature vector is a 15-dimensional mel-cepstrum concate-
nated by the energy component. 140 mixture Gaussians are trained
for each HMM using 80-dimensional context vectors formed by
concatenating 5 basic feature vectors for time windows of differ-
ent lengths around the current frame [6].

The data includes four sets of 350 words per each speaker.
Three sets are used for training the models and remaining one for
testing. To get the average recognition rates used in method com-
parisons the speaker-dependent tests are repeated for seven differ-
ent speakers. In Tables 1 and 2 three different rates are given to
describe the correctness of the results. The phoneme error rate
counts the insertion, deletion and substitution errors, the correct
phoneme rate counts only the correct phonemes and the correct
word rate counts only the fully correct words with no phoneme er-
rors. To estimate a limit for the best possible string ranking method
with the given HMM and DEC results the top-N rate is computed
as well. It counts how often the correct word is among the topN

result strings.
As can be seen from Table 1, the DEC results were very good

in the original test set. Actually even by using the DEC in the
conventional way [3] to correct only the best HMM result string
the rates are about as good as by the 5-best HMM-DEC. The DEC
seems to be working very well as noted also in [9].

One problem with the DEC is that if it encounters recognition
errors in untrained phoneme contexts, it may try to use invalid rules
for corrections and end up to an even worse string. To prevent this
the DEC should be trained using large variety of typical erroneous

Rate % HMM DEC-1 DEC-5
Original test set

Phoneme errors 5.2 2.3 2.2
Correct phonemes 96.0 98.2 98.3
Fully correct words 73.8 90.3 90.1
Correct in top 5 79.4 - 97.3

Reorganized test set
Phoneme errors 7.2 7.8 6.6
Correct phonemes 94.8 94.2 95.4
Fully correct words 66.8 69.1 70.9
Correct in top 5 72.6 - 80.9

Table 1: The average test set recognition rates using only the HMM
decoding “HMM”, using the conventional single output DEC for
the best HMM string “DEC-1” and using the proposed 5-best
HMM-DEC “DEC-5”.

strings, but this is normally difficult to execute, for example for a
new speaker. Anyhow, the phoneme contexts in the current test set
that was used in [6] as well, are quite well covered in the training
data although it is all recorded on a separate session in a different
day.

To put the DEC (and the HMMs as well) into a more chal-
lenging test, the division of the data into training and test sets is
reorganized. For each speaker the data is divided now so that in
each speech recording, including the previous test set recording as
well, every fourth word is selected for the test set and the other
three for the training set. So the size of the test and training sets
are about the same as in the previous test, but the word lists used
in the training and test sets are now completely distinct. An addi-
tional difficulty is that the training material will not any more be
balanced for the phoneme combinations, which may be fatal, be-
cause the remaining set of 263 different training words is not very
large. Some phoneme pairs or even some rare phonemes may now
be completely missing from the training data and at the same time
over-emphasized in the test data. At least for the HMMs this will
surely introduce some additional recognition errors and some DEC
rules will probably be missing as well (the total size of the DEC
can be over 30 % smaller).

The rates for the reorganized test set in Table 1 show that the
HMM recognition rates were clearly better in the original test set.
Although the number of fully correct words can still be increased
by the conventional DEC, the total increase of phoneme errors re-
veals that some unseen test strings introduce new problems. The
5-best DEC-HMM system selects the result string from the gener-
ated set of several alternative corrected strings and the improved
rates show that on the average it also succeeds to reduce errors.

In theory, the DEC should be correct for the training data only
after four iterations, but the experiments indicated that after the
third and subsequent iterations with the current training data the
average test data result is still the same as after the second iteration.
The reason is that after two iterations the DEC can already handle
the strings of the whole training data almost 100.0 % correctly
so that very few rule modifications can still take place and results
from those modifications will not be seen as a significant change
in the test data result. After the first DEC iteration the column
of average performance rates corresponding to the last column of
Table 1 were: 2.3 %, 98.3 %, 89.3 % and 96.6 % and for the
reorganized test set: 6.7 %, 95.4 %, 70.4 and 79.8 %.



The checking of the rules using a large vocabulary will, at
least, prevent that any unseen phoneme combinations in correct
strings would get transformed into incorrect results. This check-
ing was already included in the DEC results of Table 1, but without
this check the three recognition rates corresponding to the last col-
umn of Table 1 were 2.4 %, 98.1 % and 89.2 % for the original test
set and 11.5 %, 91.6 % and 51.2 % for the reorganized test set. So,
the latter extreme test shows how vital this check is if untrained
phoneme contexts are to be expected.

Rate % 1 2 3 4 5 6 10
Orig. Single output DEC
Errors 2.3 2.1 2.1 2.2 2.2 2.3 2.3
Phon. 98.2 98.4 98.4 98.3 98.3 98.3 98.3
Words 90.3 90.6 90.4 90.1 90.0 89.8 89.6
Top-N 90.3 93.8 95.3 95.6 95.6 95.6 95.6
Orig. Multiple output DEC
Errors 1.9 1.9 2.1 2.1 2.2 2.2 2.3
Phon. 98.6 98.6 98.5 98.4 98.3 98.3 98.2
Words 92.1 91.6 90.8 90.5 90.1 89.9 89.3
Top-N 93.2 96.1 97.2 97.3 97.3 97.3 97.3
Reorg. Single output DEC
Errors 7.8 7.4 7.1 7.1 7.0 7.0 7.0
Phon. 94.2 94.8 95.1 95.2 95.3 95.3 95.2
Words 69.1 70.2 70.6 70.7 70.8 70.7 70.4
Top-N 69.1 74.4 76.4 77.3 77.8 77.9 78.1
Reorg. Multiple output DEC
Errors 7.0 6.7 6.6 6.6 6.6 6.6 6.6
Phon. 94.9 95.3 95.4 95.4 95.4 95.4 95.4
Words 69.8 70.6 70.7 70.8 70.9 70.8 70.5
Top-N 71.9 77.4 79.3 80.1 80.9 81.1 81.4

Table 2: The average rates of phoneme errors “Errors”, correct
phonemes “Phon.”, fully correct words “Words” and fully correct
words to belong in the top-N string set. N = 1; 2; : : : is the
amount of strings extracted from the HMM decoding and corrected
by the DEC. Results on both the original test set “Orig.” and the
difficult reorganized test set “Reorg.” are given.

At first one might think that the result ofN -best DEC-HMM
could be improved with small computational effort by expanding
to more and more result candidates (N), giving them to DEC and
taking the winner string according to the HMM score. Anyhow,
according to the experiments (Table 2) the increased recognition
time, for example in expanding N from 5 to 10 is only about 3 % as
expected, but, more importantly, the recognition performance does
not improve. The experimental results seem to indicate that there
is actually no notable difference between the rates using values
N = 2; : : : ; 10. One reason might be that while more candidates
are given to DEC the new strings are further and further away from
the correct word and thus they may, in fact, introduce more new
errors to the ranking of candidate strings than correct words. For
the correct words that might occasionally be found by increasing
N , the chances to win the ranking of all the new result strings will
probably get lower asN increases. The natural explanation is that
errors inevitably occur when the string that fits to the DEC rules
and matches best to the HMMs simply is incorrect. For the difficult
reorganized test set the multiple output DEC and the increase of
N give some slight improvements for the recognition rates. Using
only this test it is impossible to select any generally superior value

for N , but anyhow, there seems to be no reason to useN > 5.

6. CONCLUSIONS

This paper presents a method to connect aN -best HMM system
and a multiple output DEC to find out the best result string obeying
the DEC rules. The method is approximative in the sense that
only theN best matching HMM strings are transformed by the
DEC, but the experiments show that N need not be very large.
According to the experiments the DEC is a very successful tool to
correct erroneous strings, but naturally, the rules are valid only for
the phoneme combinations seen on the training data. When tested
on an extreme data in which the dictated word set is completely
distinct from the set used for training, some of the errors can still
be corrected by using the suggestedN -best HMM-DEC system.

7. REFERENCES

[1] Enrico Bocchieri. Vector quantization for the efficient com-
putation of continuous density likelihoods. InProceedings of
the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), volume 2, pages 692–695, 1993.

[2] Teuvo Kohonen. Dynamically expanding context, with ap-
plication to the correction of symbol strings in recognition of
continuous speech. InProceedings of the 8th International
Conference on Pattern Recognition, pages 1148–1151, Paris,
France, 1986.

[3] Teuvo Kohonen. Self-Organizing Maps. Springer, Berlin,
1995.

[4] Karen Kukich. Techniques for automatically correcting words
in text. ACM Computing Surveys, 24(4):377–439, December
1992.

[5] Mikko Kurimo. Hybrid training method for tied mixture den-
sity hidden Markov models using learning vector quantization
and Viterbi estimation. InProceedings of the IEEE Workshop
on Neural Networks for Signal Processing, pages 362–371,
Ermioni, Greece, September 1994.

[6] Mikko Kurimo. Using Self-Organizing Maps and Learning
Vector Quantization for Mixture Density Hidden Markov Mod-
els. PhD thesis, Helsinki University of Technology, Espoo,
Finland, 1997.

[7] Lawrence R. Rabiner. A tutorial on hidden Markov models
and selected applications in speech recognition.Proceedings
of the IEEE, 77(2):257–286, 1989.

[8] Frank K. Soong and Eng-Fong Huang. A tree-trellis based fast
search for finding the n best sentence hypotheses in continu-
ous speech recognition. InProceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), volume 1, pages 705–708, 1991.

[9] Kari Torkkola, Jari Kangas, Pekka Utela, Sami Kaski, Mikko
Kokkonen, Mikko Kurimo, and Teuvo Kohonen. Status re-
port of the Finnish phonetic typewriter project. In T. Koho-
nen, K. Mäkisara, O. Simula, and J. Kangas, editors,Artifi-
cial Neural Networks, volume I, pages 771–776, Amsterdam,
Netherlands, 1991. North-Holland.


