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ABSTRACT

A major problem for speech recognition systems is relieving the
talker of the need to use a close-talking, head-mounted or a desk-
stand microphone. A likely solution is the use of an array of mi-
crophones that can steer itself to the talker and can use a beam-
forming algorithm to overcome the reduced signal-to-noise ratio
due to room acoustics. This paper reports results for a tracking,
real-time microphone-array as an input to an HMM-based con-
nected alpha-digits speech recognizer. For a talker in the very near
field of the array (within a meter), performance approaches that of
a close-talking microphone input device. The effects of both the
noise reducing steered array and the use of a Maximuma poste-
riori (MAP) training step are shown to be significant. Here, the
array system and the recognizer are described, experiments are
presented, and the implications of combining these two systems
discussed.

1. INTRODUCTION

Microphone-array systems have potential as a replacement for inc-
onvenientconventionalmicrophones, such as head-mounted, close-
talking microphones or desk-stand microphones, for speech recog-
nition applications. However, only a few attempts have been made
to date to use a real-time microphone-array system for this pur-
pose. Most early microphone-array work has been done off-line
using a fixed talker with fixed beamforming[1, 2, 3] resulting in
performance that has, in general, been significantly poorer than
that of using a close-talking microphone. While a remote micro-
phone system is less obtrusive, it suffers from degradation due to
reverberant room acoustic artifacts and background noise. Re-
mote microphone array systems, however, are designed to over-
come these degradations. These effects are simply not significant
when the talker is within a few inches of a microphone.

The novelty in this paper is the combination of a real-time,
tracking microphone-array system with a modern HMM-based rec-
ognizer for the difficult English alpha-digits vocabulary. Though
similar results have been shown by Yamada, Nakamura and Shikano
[4, 5], the system here can be distinguished by its use of very near
field, three-dimensional beamforming and an incremental-training
method [6].

Two separate experiments have been performed. The first shows
the recognition performance of a Baseline HMM Model incre-
mentally retrained with microphone array data. Here, an HMM
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model was initially trained from a large dataset collected from
talkers using a close-talking microphone for an input device. The
model was then incrementally retrained with a relatively small
dataset, 4500 word tokens, taken from talkers using the beam-
formed, microphone-array signal.

The second experiment compares, through recognition perfor-
mance of the Baseline Model, the microphone array, a single re-
mote microphone and a close-talking microphone as input devices.
For this experiment an additional dataset was collected through the
use of the same apparatus and testing procedure as the first, except
the close-talking microphone was replaced by a single remote mi-
crophone (of the same type as the microphones used in the array)
centered in the array.

The sections following briefly describe the microphone array
system, the LEMS recognition system and properties of the work-
ing dataset. Next, the experiments are described and the results
are presented. Finally, there is a discussion of the implications that
follow.

2. THE BROWN MEGAMIKE II

A by-product of a Huge Microphone Array(HMA) project [7] is a
circuit board that may be populated and packaged as a stand-alone
16-channelmicrophone-array system calledBrown Megamike II .
The system interfaces to a personal computer as shown in Figure
1. The microphone array itself consists of 16 pressure gradient
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Figure 1: Block Diagram of the Apparatus

microphone elements set in rubber grommets on hardware cloth
about one inch in front of a rectangular piece of acoustic foam at



a 45 degree angle (see Figure 2) . The array is placed between the
monitor and the keyboard of a SUN workstation.

All location estimation and beamforming is done by a micro-
processor in the microphone-array electronics. While there is a ca-
pability for transmitting both audio and auxiliary data (e.g., point-
ing location) digitally, in this work the beamformed signal was
passed through a DAC system and the analog signal was resam-
pled using the recording capabilities of the SUN workstation. The
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Figure 2: Microphone Array Showing Delay Estimation Pairings

processing used in these experiments is as follows:

� Signals from all 16 microphone channels are sampled si-
multaneously at 20ks/s to make frames of 1024 points per
channel.

� The window which is applied to each frame is essentially
rectangular, but has 100 points of cosine taper and 100 points
of zero padding at each end. This gives 41.2ms of nonzero
data.

� Sixteen, 1024-point real DFTs are taken. On the ADSP-
21020 microprocessor, these are quite fast, requiring only
about 365�s each.

� Fifteen time delays for the differences in the time-of-arrival
of the talker signals in pairs of microphones (see Figure 2)
are estimated using a weighted linear fitting and unwrap-
ping algorithm to the phase difference in the frequency do-
main [8].

� Three dimensional bearing estimates are made for eachquad
(see Figure 2).

� For practical reasons, the array is considered to be two fully
independentsub-arrays, each having three quads and, there-
fore, three spatial bearings. An estimate of the source loca-
tion is made from theclose-crossing pointsof the bearings
of the two sub-arrays. (Aclose-crossing pointis the mid-
point of the line representing the shortest distance between
two bearing lines.)

� When the time-delay estimates are all consideredgood (a
tight cloud), then the beamformer time delays are updated
for the current frame. In those cases where the estimates are
not deemedgood, the time-delay parameters for the beam-
former remain unchanged.

� The array is pointed by multiplyingeach signal in the fre-
quency domain by its appropriate phase shift.

� All the delayed signals are added across microphones, in-
cluding the unshifted signal from the reference microphone.
This is essentially unweighteddelay and sum (ds)beam-
forming.

� The IDFT is taken and overlap-add is used to assemble the
output.

3. THE LEMS RECOGNIZER

The LEMS recognizer, developed over the last 18 years, is an
HMM-based system that has been described more fully in [9]. Its
purpose is to allow the study of better signal processing and fea-
ture analysis methods for speech recognition. For this purpose,
the English alphabet plus digits vocabulary is a good choice. To
these 36 words are added two control words,period andspace.
Thus, results are gauged on a 38-word vocabulary. A tied-mixture,
explicit-duration HMM is used for the recognition system. No lan-
guage model is used.

Three feature sets are generated and treated as being indepen-
dent; these are (1) – 12 mean-corrected low-order cepstral coeffi-
cients, (2) – their 12 first differences (in time), and (3)– a set of two
features: overall energy and its first difference. The DFT-based
signal processing has been optimized in earlier work [10] in which
the log-magnitudes of the DFT are low-pass filtered(liftered), non-
linearly sampled, and transformed to obtain the real cepstal coeffi-
cients.

Word models are used in the LEMS recognizer. These average
about five states – words likew have several more, and words like
e may have as few as four states. The models are very simple as
there are noself-loops, since explicit duration modeling eliminates
this need. Skipping states is also not allowed, as experiments have
shown that allowing states to be skipped generally degrades per-
formance for the alpha-digits task with speech data obtained from
talkers reading orthographic strings. Some 256 Gaussians are used
for each feature space, with unique mixture coefficients for each
state in each model. In training, a discrete, explicit-duration model
is trained first after clustering each feature-set vector into a code-
book of 256 classes. The training from the discrete system is used
to initialize the training for the tied-mixture system

4. DATABASES

The largest dataset used was taken several years ago for talkers
using a close-talking microphone who uttered connected strings
each of about twelve alpha-digits, lasting about four seconds. One-
hundred twenty talkers were recorded, each giving three sessions
of 15 strings each. This totaled about 8 hours of speech data.
From this, about five hours, or 3600 utterances, from 80 talkers
both male and female, have been selected for training. Twenty
more talkers are considered the “tweaking” set, and 20 more have
been used exclusively for testing. The important statistics for this
dataset are given in Table 1. All talkers have standard American
dialects, with some bias due to our location in New England. This
dataset is known as the Baseline dataset.

# talkers # utterances
dataset female male total female male total

train 30 50 80 1328 2156 3484
adjust 9 11 20 243 370 620
test 8 12 20 234 361 595
total 47 73 120 1805 2887 4699

Table 1: Standard LEMS Baseline Dataset

For the experiments presented here, three new speech databases
were collected from 15 male talkers and 15 female talkers who
were all native speakers of American English. Table 2 gives the
statistics of the new datasets. Ideally the second experiment would



dataset male female # utts # words

training (Session A) 5 5 384 4608
testing (Session A) 5 5 400 4800
testing (Session B) 5 5 362 4898

Table 2: New Simultaneously Recorded (for each Session)
Datasets

require three simultaneously recorded datasets, one from the close
talking headset, one from the microphone array and one from the
single remote microphone. Unfortunately, the current apparatus
limited concurrent recording to two channels (stereo). In order
to still make a fair comparison, one set of simultaneous recordings
was made with the close-talking head set and the microphone array
(Session A). Recently (some eight months later), a second set of
simultaneous recordings has been made (Session B). One channel
took data directly from a single pressure gradient electret element
mounted in the center of the array. While the other channel took
the analog array output. Several of the talkers were the same as in
Session A, but the room environment had changed somewhat over
the interim. The new environment had more background noise in
the form of “screaming” monitors and noisy disk drives. Listening
to the data, one can hear a distinct improvement in the signal to
noise ratio of the array signal relative to that of the single micro-
phone.

5. INCREMENTAL MAXIMUM A POSTERIORI(MAP)
TRAINING FOR HMM PARAMETERS

The learning technique used to adapt the recognition model is a
variation on therecursive Bayesapproach for performing sequen-
tial estimation of model parameters [11] given incremental data
[12].

In the case of missing-data problems (e.g., HMMs), the Expect-
ation-Maximization (EM) algorithm can be used to provide an iter-
ative solution for estimation of the MAP parameters. The training
algorithm that incorporates the recursive Bayes approach with the
incremental EM method [12] (i.e., randomly selecting a subset of
data from the training set and immediately applying the updated
model) is fully described in [13] and partly in [14], thus it is not
repeated here. However, it has been shown that incremental train-
ing can quickly and efficiently adapt an HMM system with a min-
imal amount of new data. At each update of the iterative training,
there is a corresponding sequence of posterior parameters which
act as the memory for previously observed data. Here, the Base-
line Model is used as the initial prior information.

6. EXPERIMENTS

The large LEMS alpha-digits speech dataset described above was
used to develop a Baseline HMM Model. This model became the
initial prior information for MAP training. The testing subsets
from Session A were used exclusively to generate two new recog-
nition models: a new close-talking microphone model (CTMM),
and a new microphone-array model (MAM). The new recognizers
were developed by applying incremental MAP training with priors
from the Baseline Model.

The objective of these experiments was to determine the im-
pact of real-time, near-field beamforming (Sessions A and B) and
of MAP training (Session A) on a complex speech recognition

task. For the new data recorded in Session A, talkers properly
wore a head-mounted microphone and were seated in an office-
type chair that swivels and is on casters, in front of the array /
workstation apparatus. They were asked to read strings from a pre-
defined, balanced vocabulary displayed in large type on the work-
station screen with no instruction given about posture or move-
ment. However, the screen-reading task itself likely reduced move-
ment substantially. The two recordings were not exactly simulta-
neous since the microphone-array speech data has some latency of
about 100ms, which was estimated and corrected in every record-
ing. The talkers for Session B were seated in the same position and
used the same procedure and apparatus except for the replacement
of the close-talking microphone by a single remote microphone.

Results for Session A are presented in Table 3. The perfor-
mance of the Baseline Model recognizing the close-talking micro-
phone (Session A) data is better than the same model on the Base-
line dataset. Considering that the two test datasets were different,
these performances are consistent. The results for the CTMM and

Test Data Baseline CTMM MAM
(Session A) (% Correct) (% Correct) (%Correct)
Baseline 91.7 - -
Close Talking 94.0 94.5 -
Mic. Array 83.2 - 90.0

Table 3: Recognition Performance for Session A (% Correct)

the MAM set a new standard. The CTMM had a 94.5% perfor-
mance rate on the close-talking test data (Session A), an increase
of 0.5% over the Baseline Model on the same data. The MAM's
90.9% performance on the array test data (Session A) represents an
increase of nearly 8% over the Baseline Model on the same data.
One may conclude that incremental MAP training has significantly
improved the HMM model.

The results for Session B were obtained using the Baseline
Model exclusively and are given in Table 4. The raw score for the
microphone array is 5.4% lower than the Baseline score in Session
A. The reason for this can be found by investigating the details of
how these scores were computed; the number of substitutions, in-
sertions and deletions were summed and then divided by the total
number of words spoken. It was noticed that a higher number of

Test Data Raw score Initial Insertions Excluded
(Session B) (% Correct) (% Correct)
Single Mic. 77.2 79.0
Mic. Array 77.8 82.4

Table 4: Recognition Performance for Session B (% Correct)

insertions was being made in Session B than in Session A, while
the number of substitutions roughly stayed the same. Furthermore,
57.0% of the insertions in Session B were occurring at the begin-
ning of each utterance compared with only 11.6% for Session A. It
was also noticed that there were audible artifacts at the beginning
of many of the recordings made during Session B. These artifacts
were due to the microphone array initially miss-aiming, possibly
to a noise source, then adapting and steering correctly to the talker.
In the eight month interval between Sessions A and B, background
noise in the recording environment increased substantially and was



most likely responsible for thesteering problem. When the inser-
tions occurringonly at the beginning of the utterances were not
counted, and recordings havinganyaudibly distinguishable steer-
ing artifacts were removed, the score for the microphone array in-
creased from 77.8% to 82.4% which is consistent with Session A
(83.2%). This increase in performance is good evidence that the
steering problem was causing a large number of the initial inser-
tions.

Column 1 of Table 4 shows that the raw score for the micro-
phone array is marginally better than that for the single micro-
phone. However, when all initial insertions were excluded1, the
microphone array out-performed the single microphone by 3.4%
as shown in Column 2. As one might expect, due to the inability
to reject noise, the percentage of insertions occurring at the be-
ginning of each utterance was also high for the single microphone
(38.0%), but it was even higher for the microphone array (57.0%).

7. CONCLUSIONS

When the Baseline Model was incrementally trained to the micro-
phone array training data (Session A), the new speech recognizer,
MAM, exhibited a 90.9% recognition rate on the array test data
(Session A). This performance matches the highest level achieved
for a close-talking microphone input in past experiments. The high
quality of this performance suggests that this microphone-array
system may be used as a quality input device for speech recogni-
tion systems. However, the even more recent experiment (Session
B) indicates that additional work must be done to overcome the
real-time steering problem in even a moderately noisy room. Fu-
ture work will also involve the use of newly trained speech models
for evaluating the relative performance of the single microphone
and the microphone array.

An ideal input device is one which can gather speech suit-
able for accurate speech recognition in real-time while allowing
the user freedom of movement. The current apparatus has been
shown to perform accurately in a relatively quiet environment and
is a step in advancing the general ease of using a modern speech
recognizer.
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