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ABSTRACT model was initially trained from a large dataset collected from

. . . o talkers using a close-talking microphone for an input device. The
A major problem for speech recogon systems is relieving the a4e| was then incrementally retrained with a relatively small
talker of the need to use a close-talking, head-mounted or a deSk‘dataset, 4500 word tokens, taken from talkers using the beam-
stand microphone. A likely solution is the use of an array of mi- formeq, microphone-array signal.
crophones that can steer itself to the talker and can use a beam-  The second experiment compares, through reitiogrperfor-
forming algorithm to overcome the reduced signal-to-noise ratio mance of the Baseline Model, the microphone array, a single re-
due to room acoustics. This paper reports results for a tracking, mote microphone and a close-talking microphone as input devices.
real-time microphone-array as an input to an HMM-based con- pqr this experiment an additional dataset was collected through the
nected alpha-digits speech recognizer. For a talker in the very neagse of the same apparatus and testing procedure as the first, except
field of the array (within a meter), performance approaches that of 1,4 close-talking microphone was replaced by a single remote mi-
a close-talking microphone input device. The effects of both the crophone (of the same type as the microphones used in the array)
noise reducing steered array and the use of a Maxirayaste- centered in the array.
riori (MAP) training step are shown to be significant. Here, the The sections following briefly describe the microphone array
array system and the recognizer are described, experiments argysiem, the LEMS recognition system and properties of the work-
presented, and the implications of combining these two systemsjng gataset. Next, the experiments are described and the results
discussed. are presented. Finally, there is a discussion of the implications that

follow.
1. INTRODUCTION
2. THE BROWN MEGAMIKE Il

Microphone-array systems have potential as a replacement for inc-
onvenientconventional microphones, such as head-mounted, closex by-product of a Huge Microphone Array(HMA) project [7] is a
talking microphones or desk-stand microphones, for speech recogeircuit board that may be populated and packaged as a stand-alone
nition applications. However, only a few attempts have been made16-channel microphone-array system cabedwn Megamike |1 .
to date to use a real-time microphone-array system for this pur- The system interfaces to a personal computer as shown in Figure
pose. Most early microphone-array work has been done off-line 1. The microphone array itself consists of 16 pressure gradient
using a fixed talker with fixed beamforming[1, 2, 3] resulting in
performance that has, in general, been significantly poorerthan —F1 —1i —1
that of using a close-talking microphone. While a remote micro- 486 or Pentium or XXX
phone system is less obtrusive, it suffers from degradation due to
reverberant room acoustic artifacts and background noise. Re-
mote microphone array systems, however, are designed to over-
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come these degradations. These effects are simply not significant I . reo Au
when the talker is within a few inches of a microphone. g

The novelty in this paper is the combination of a real-time, Brown Megamike Il g
tracking microphone-array system with a modern HMM-based rec- Microphone Array

Electronics

ognizer for the difficult English alpha-digits vocabulary. Though

similar results have been shown by Yamada, Nakamura and Shikano

[4, 5], the system here can be distinguished by its use of very near WW Hmm

field, three-dimensional beamforming and an incremental-training |© © © © @ ©@©©

method [6]. - - - - - - - -
Two separate experiments have been performed. The first shows ey ofietopnones e

the recognition performance of a Baseline HMM Model incre-

mentally retrained with microphone array data. Here, an HMM

ed Close Talking Microphone

Figure 1: Block Diagram of the Apparatus
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a 45 degree angle (see Figure 2) . The array is placed between the 3. THE LEMS RECOGNIZER
monitor and the keyboard of a SUN workstation.

All location estimation and beamforming is done by a micro- The LEMS recognizer, developed over the last 18 years, is an
processorin the microphone-array electronics. While there is a ca-HMM-based system that has been described more fully in [9]. Its
pability for transmitting both audio and auxiliary data (e.g., point- purpose is to allow the study of better signal processing and fea-
ing location) digitally, in this work the beamformed signal was ture analysis methods for speech redtign. For this purpose,
passed through a DAC system and the analog signal was resamthe English alphabet plus digits vocabulary is a good choice. To
pled using the recording capabilities of the SUN workstation. The these 36 words are added two control wordstiod and space

Thus, results are gauged on a 38-word vocabulary. A tied-mixture,
} aa.45cm ! explicit-duration HMM is used for the recognition system. No lan-
‘ guage model is used.
Three feature sets are generated and treated as being indepen-

f‘” 6.350m>?</ 6.350m94‘<’ 6.35cm=1

Subarray 0 | Subarray 1

- dent; these are (1) — 12 mean-corrected low-order cepstral coeffi-

e o o o e o o o- 7
1><1 >< % >< 9><5 ><T7 o a50m cients, (2) — their 12 first differences (in time), and (3)— a set of two
“reg' Ve e ¢ Vo e -4 features: overall energy and its first difference. The DFT-based

) signal processing has been optimized in earlier work [10] in which
Quad0 Quadl Quad2 Quad0  Quadl Quad? the log-magnitudes of the DFT are low-pass filtered(liftered), non-
linearly sampled, and transformed to obtain the real cepstal coeffi-

Figure 2: Microphone Array Showing Delay Estimation Pairings cients.

Word models are used in the LEMS recognizer. These average

processing used in these experiments is as follows: about five states — words like have several more, and words like

e may have as few as four states. The models are very simple as
there are ngelf-loops since explicit duration modeling eliminates
this need. Skipping states is also not allowed, as experiments have
shown that allowing states to be skipped generally degrades per-
The window which is applied to each frame is essentially formance for the alpha-digits task with speech data obtained from
rectangular, but has 100 points of cosine taper and 100 pointga|kers reading orthographic strings. Some 256 Gaussians are used
of zero padding at each end. This gives 41.2ms of nonzerofor each feature space, with unique mixture coefficients for each
data. state in each model. In training, a discrete, explicit-duration model
Sixteen, 1024-point real DFTs are taken. On the ADSP- is trained first after clustering each feature-set vector into a code-
21020 microprocessor, these are quite fast, requiring only book of 256 classes. The training from the discrete system is used
about 36s each. to initialize the training for the tied-mixture system

Signals from all 16 microphone channels are sampled si-
multaneously at 20ks/s to make frames of 1024 points per
channel.

Fifteen time delays for the differences in the time-of-arrival

of the talker signals in pairs of microphones (see Figure 2) 4. DATABASES

are estimated using a weighted linear fitting and unwrap-

ping algorithm to the phase difference in the frequency do- The largest dataset used was taken several years ago for talkers
main [8]. using a close-talking microphone who uttered connected strings
each of about twelve alpha-digits, lasting about four seconds. One-
hundred twenty talkers were recorded, each giving three sessions
of 15 strings each. This totaled about 8 hours of speech data.
For practical reasons, the array is considered to be two fully From this, about five hours, or 3600 utterances, from 80 talkers
independentsub-arrays, each having three quads and, therepoth male and female, have been selected for training. Twenty
fore, three spatial bearings. An estimate of the source loca-more talkers are considered the “tweaking” set, and 20 more have
tion is made from thelose-crossing pointsf the bearings  peen used exclusively for testing. The important statistics for this

Three dimensional bearing estimates are made foreaath
(see Figure 2).

of the two sub-arrays. (Alose-crossing poinis the mid- dataset are given in Table 1. All talkers have standard American
point of the line representing the shortest distance betweengialects, with some bias due to our location in New England. This
two bearing lines.) dataset is known as the Baseline dataset.

When the time-delay estimates are all consideyedd (a

tight cloud), then the beamformer time delays are updated # talkers # utterances

for the current frame. In those cases where the estimates ar¢_dataset|| female | male | total || female | male | total

not deemedjood, the time-delay parameters for the beam- train 30 50 80 1328 | 2156 | 3484

former remain unchanged. adjust 9 11 20 243 370 | 620

The array is pointed by multiplyingach signal in the fre- test 8 12 | 20 234 | 361 | 595

quency domain by its appropriate phase shift. total 47 3 120 1805 | 2887 | 4699

All the delayed signals are added across microphones, in- Table 1: Standard LEMS Baseline Dataset

cluding the unshifted signal from the reference microphone.
This is essentially unweightedelay and sum (dsheam-

forming For the experiments presented here, three new speech databases

_ _ were collected from 15 male talkers and 15 female talkers who
The IDFT is taken and overlap-add is used to assemble the\ere all native speakers of American English. Table 2 gives the
output. statistics of the new datasets. Ideally the second experiment would



| dataset | male | female | # utts | #words |

task. For the new data recorded in Session A, talkers properly

training (Session A) 5 5 384 4608 wore a head-mounted microphone and were seated in an office-
testing (Session A) 5 5 400 4800 type chair that swivels and is on casters, in front of the array /
testing (Session B) 5 5 362 4898 workstation apparatus. They were askedto read strings from a pre-
defined, balanced vocabulary displayed in large type on the work-
Table 2: New Simultaneously Recorded (for each Session)station screen with no instruction given about posture or move-

Datasets ment. However, the screen-reading task itself likely reduced move-
ment substantially. The two recordings were not exactly simulta-
neous since the microphone-array speech data has some latency of
require three simultaneously recorded datasets, one from the closabout 100ms, which was estimated and corrected in every record-
talking headset, one from the microphone array and one from theing. The talkers for Session B were seated in the same position and
single remote microphone. Unfortunately, the current apparatusused the same procedure and apparatus except for the replacement
limited concurrent recording to two channels (stereo). In order of the close-talking microphone by a single remote microphone.

to still make a fair comparison, one set of simultaneous recordings ~ Results for Session A are presented in Table 3. The perfor-
was made with the close-talking head set and the microphone arraymance of the Baseline Model recognizing the close-talking micro-
(Session A). Recently (some eight months later), a second set ofphone (Session A) data is better than the same model on the Base-
simultaneous recordings has been made (Session B). One channéhe dataset. Considering that the two test datasets were different,
took data directly from a single pressure gradient electret elementthese performances are consistent. The results for the CTMM and
mounted in the center of the array. While the other channel took

the analog array output. Several of the talkers were the same as in [ Test Data Baseline CTMM MAM
Session A, but the room environment had changed somewhat over | (Session A) (% Correct) | (% Correct) | (%Correct)
the interim. The new environment had more background noise in [ Baseline 91.7 - -

the form of “screaming” monitors and noisy disk drives. Listening Close Talking 94.0 945 -

to the data, one can hear a distinct improvement in the signal to | Mic. Array 83.2 - 90.0

noise ratio of the array signal relative to that of the single micro-
phone.

Table 3: Recognition Performance for Session A (% Correct)

5. INCREMENTAL MAXIMUM A POSTERIORI(MAP)
TRAINING FOR HMM PARAMETERS the MAM set a new standard. The CTMM had a 94.5% perfor-
mance rate on the close-talking test data (Session A), an increase
The learning technique used to adapt the recognition model is aof 0.5% over the Baseline Model on the same data. The MAM's
variation on theecursive Bayeapproach for performing sequen-  90.9% performance on the array test data (Session A) represents an
tial estimation of model parameters [11] given incremental data increase of nearly 8% over the Baseline Model on the same data.
[12]. One may conclude that incremental MAP training has significantly
In the case of missing-data problems (e.g., HMMs), the Expect-improved the HMM model.
ation-Maximization (EM) algorithm can be used to provide an iter- The results for Session B were obtained using the Baseline
ative solution for estimation of the MAP parameters. The training Model exclusively and are given in Table 4. The raw score for the
algorithm that incorporates the recursive Bayes approach with themicrophone array is 5.4% lower than the Baseline score in Session
incremental EM method [12] (i.e., randomly selecting a subset of A. The reason for this can be found by investigating the details of
data from the training set and immediately applying the updated how these scores were computed; the number of substitutions, in-
model) is fully described in [13] and partly in [14], thus it is not sertions and deletions were summed and then divided by the total
repeated here. However, it has been shown that incremental trainnumber of words spoken. It was noticed that a higher number of
ing can quickly and efficiently adapt an HMM system with a min-

imal amount of new data. At each update of the iterative training, Test Data Raw score [ Initial Insertions Excluded
there is a corresponding sequence of posterior parameters which | (Session B)|| (% Correct) (% Correct)

act as the memory for previously observed data. Here, the Base- ["Single Mic. 77.2 79.0

line Model is used as the initial prior information. Mic. Array 77.8 82.4

6. EXPERIMENTS . .
Table 4: Recognition Performance for Session B (% Correct)

The large LEMS alpha-digits speech dataset described above was
used to develop a Baseline HMM Model. This model became the insertions was being made in Session B than in Session A, while
initial prior information for MAP training. The testing subsets the number of substitutionsughly stayed the same. Furthermore,
from Session A were used exclusively to generate two new recog-57.0% of the insertions in Session B were occurring at the begin-
nition models: a new close-talking magzthone model (CTMM), ning of each utterance compared with only 11.6% for Session A. It
and a new microphone-array model (MAM). The new recognizers was also noticed that there were audible artifacts at the beginning
were developed by applying incremental MAP training with priors of many of the recordings made during Session B. These artifacts
from the Baseline Model. were due to the microphone arraytially miss-aiming, possibly
The objective of these experiments was to determine the im- to a noise source, then adapting and steering correctly to the talker.
pact of real-time, near-field beamforming (Sessions A and B) and In the eight month interval between Sessions A and B, background
of MAP training (Session A) on a complex speech regtagm noise in the recording environmentincreased substantially and was



[2] A. Acero and R. M. Stern.

most likely responsible for theteering problemWhen the inser-
tions occurringonly at the beginning of the utterances were not
counted, and recordings haviagyaudibly distinguishable steer-
ing artifacts were removed, the score for the microphone array in-
creased from 77.8% to 82.4% which is consistent with Session A
(83.2%). This increase in performance is good evidence that the
steering problem was causing a large number of the initial inser-
tions.

Column 1 of Table 4 shows that the raw score for the micro-

phone array is marginally better than that for the single micro-
phone. However, when all itiel insertions were excludel the
microphone array out-performed the single microphone by 3.4%
as shown in Column 2. As one might expect, due to the inability
to reject noise, the percentage of insertions occurring at the be-
ginning of each utterance was also high for the single microphone
(38.0%), but it was even higher for the microphone array (57.0%).

7. CONCLUSIONS

When the Baseline Model was incrementally trained to the micro-
phone array training data (Session A), the new speech recognizer,
MAM, exhibited a 90.9% recognition rate on the array test data
(Session A). This performance matches the highest level achieved
for a close-talking microphone input in past experiments. The high
quality of this performanceuggests that this microphone-array
system may be used as a qualitput device for speech recogni-
tion systems. However, the even more recent experiment (Sessiorf10]
B) indicates that additional work must be done to overcome the
real-time steering problem in even a moderately noisy room. Fu-
ture work will also involve the use of newly trained speech models [11)
for evaluating the relative performance of the single microphone
and the microphone array.

An ideal input device is one which can gather speech suit-

able for accurate speech rec@@m in real-time while allowing

the user freedom of movement. The current apparatus has been
shown to perform accurately in a relatively quiet environment and [12]
is a step in advancing the general ease of using a modern speech
recognizer.
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