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ABSTRACT

We present two Hammerstein-type models for parametric
system identi�cation of the lip seal friction process in a
hydraulic actuator. Adaptive algorithms with least squares
criteria are derived, and the performances of the two models
are evaluated using experimental results.

1. INTRODUCTION

Lubricated sliding lip seals are important components in
many hydraulic devices, such as actuators, solenoid valves,
etc. The requirements imposed by today's high precision
machines motivates the precise simulation of friction be-
tween these seals and sliding components, and there has
been recent e�orts to model the friction process using sys-
tem identi�cation techniques [1].

In this research, we focus on the friction of a lip seal in
a hydraulic actuator shown in Fig.1. During the operation
of the actuator, lip seal keeps the lubricant from leaking out
of the high pressured chambers while the piston separates
the actuator into two pressure regions. Since the friction
between the seal and sliding shaft a�ect the performance
of the whole system, a decent model of the friction process
leads to design of a superior system.

The objective of this research is to develop models which
successfully simulate this friction process with the velocity
of the sliding shaft v[k] and lip seal friction signal f [k] as the
input and output signals, respectively. Friction is a highly
complicated nonlinear process, which depends on the vis-
cosity of the lubricant, characteristic of lip seal material,
roughness of the sliding surfaces, hydraulic pressure, ambi-
ent temperature and relative velocity between the surfaces,
etc [1, 2, 3]. It is very di�cult to use all these parameters to
develop a model of friction process. Even if we successfully
develop such a model, the parameters of the model often
don't have an immediate relationship with physical param-
eters of the materials [1]. This situation motivates us to use
an empirical system identi�cation techniques. The advan-
tage of this approach is that it is much easier to develop a
model since it has fewer parameters than the models based
on physics, while leading to a model with quite satisfactory
performance.

In this paper, we presents some Hammerstein type mod-
els for lip seal friction process. We use an adaptive algo-
rithm with least squares criterion to �t the parameters of
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the models using the measurements of the velocity of the
sliding shaft and lip seal friction signal at various operating
conditions.

2. HAMMERSTEIN TYPE MODELS

The Hammerstein model is a nonlinear model, which makes
the assumption that the nonlinearity of the system can be
separated from the system dynamics. In a single-input-
single-output case, the Hammerstein model structure can
be described by the equation

f [k] = H(q�1) � g(v[k]);

where q�1 is the delay operator, g(�) is the static nonlin-
earity, H(q�1) is the transfer function of the linear part,
and v[k] and f [k] are the input and output of the model,
respectively. Fig.2 (a) is a block diagram of a Hammerstein
model. Despite the simplicity of its structure, the Hammer-
stein model works quite well for various nonlinear system
identi�cation problems.

Since g(�) is an element of l2 space, it can be parame-
terized by expressing as a linear combination of basis func-
tion f i(�)g of l2 space. A Daubechies wavelet basis func-
tion is used for the representation of the nonlinear mapping
function g(�). The orthogonality, and time and frequency
localization property of Daubechies wavelet basis function
enable us to represent a function with fewer parameters.
g(�) is represented using wavelet basis functions as

g(v) =
X
m;n

wm;n m;n(v)

where  (�) is the mother wavelet, and

wm;n = < g(v);  m;n(v) >;

 m;n(v) = 2�m=2 (2�mv� n):

For the linear part, a moving average (MA) �lter is used:

H(q�1) = a0 + a1q
�1 + � � �+ aN q

�N :

As shown in Section 3, by using MA �lter, along with the
parameterization of the nonlinear mapping function g(�),
we can develop an adaptive algorithm with a unique global
minimum.



If we have a priori information about the nonlinear map-
ping function of the Hammerstein model, we can take ad-
vantage of the information to develop a model. A steady
state model which illustrates the nonlinear relationship be-
tween the velocity and friction of a lip seal in a hydraulic
actuator when the relative velocity between the seal and
sliding shaft is constant has been given in [2]. Given the
physical parameters of the seal, the model provides a steady
state nonlinear relationship between the velocity of the slid-
ing shaft and friction force that the seal experiences. Fig.3
shows three dimensional plots of this steady state nonlinear
model of lip seal friction. This nonlinear model is used in
the place of the nonlinear mapping function of the Ham-
merstein model to form a model similar to Hammerstein
model. This model is combined with a Hammerstein model
in parallel form to complement the di�erence between the
theoretical model and the actual velocity/friction relation-
ship. Fig.2 (b) shows a block diagram of the parallel model.

For the parallel model, the output of the model can be
described by the equation

f [k] = H1(q
�1) � d(v[k]) +H2(q

�1) � g(v[k]):

where d(�) is the theoretical nonlinear model of lip seal fric-
tion, g(�) is the nonlinear mapping function, and

H1(q
�1) = a10 + a11q

�1 + � � �+ a1N1
q�N1 ;

H2(q
�1) = a20 + a21q

�1 + � � �+ a2N2
q�N2 :

3. LMS ADAPTIVE ALGORITHM

In this section stochastic adaptive algorithms are derived
for the Hammerstein and Parallel model with least squares
criterion.

Let v[k] be the velocity signal of the sliding shaft, and
~f [k] be the output of g(�) in Fig.2 (a). Then ~f[k] can be
represented by wavelet basis function as

~f [k] = g(v[k]) =
X
m;n

wm;n m;n(v[k]) = WT	(v[k]);

where W and 	(v[k]) are column vectors whose elements
are fwm;ng and f m;n(v[k])g, respectively. Then the lip
seal friction signal f [k] can be written as

f [k] = H(q�1) ~f [k] = AT ~F [k];

where A = [a0 a1 � � � aN ]
T

~F [k] = [ ~f[k] ~f [k � 1] � � � ~f[k �N ]]T :
De�ne

� = [AT WT ]T ; f�[k] = H(q�1;�) � ~f[k];

where H(q�1;�) is the transfer function with parameter
vector �. Then, the cost function to be minimized is

C(�) =
1

2
Eff [k]� f�[k]g

2 =
1

2
Efe2[k]g

=
1

2
(�2f +ATR ~F ~FA� 2ATR ~Fy)

where f [k] is the measurement of friction signal, e[k] is the
error signal, �2f is the variance of f [k], and

R ~F ~F =

2
64
WTR(0)W � � � WTR(�N)W

...
. . .

...
WTR(N)T � � � WTR(0)W

3
75 ;

R ~Fy =

2
64

WTR y(0)
...

WTR y(N)

3
75 ;

R(i) = Ef	[k � i]	T [k]g;

R y(i) = Ef	[k � i]y[k]g:

C(�) has a unique global minimum, since it is a quadratic
function of A and W , or equivalently of the parameter vec-
tor �. By parameterizing g(�) and using an MA �lter, the
nonlinear system identi�cation problem becomes a linear
least squares problem with unique global minimum.

To �nd the parameter vector �, the following stochastic
gradient search algorithm is used.

�k+1 = �k � �r̂[k];

where � is the convergence parameter, r̂[k] is the estima-
tion of the gradient at time k, and �k is the parameter
vector at time k. We use

r̂[k] =
@

@�

1

2
e2[k]

as the estimation of the gradient. Then, the resulting adap-
tive algorithm is

Ak+1 = A�k+1= k A
�

k+1 k; A�k+1 = Ak + �e[k] ~F [k];

Wk+1 = Wk + �e[k]A(q�1;�k)	[k];

where Ak and Wk are A and W vectors at time k.
Similar adaptive algorithm can be derived for the Par-

allel model. Let ~f1[k] and ~f2[k] be the output of d(�) and

g(�), respectively. Then ~f2[k] = WT	[k]. The output of
the model can be written as

f [k] = H1(q
�1) � ~f1[k] +H2(q

�1) � ~f2[k]

= AT1 ~F1[k] + AT2 ~F2[k];

where A1 = [a10 a11 � � � a1N1
]T ;

A2 = [a20 a21 � � � a2N2
]T ;

~F1[k] = [ ~f1[k] ~f1[k] � � � ~f1[k�N1]]
T ;

~F2[k] = [ ~f2[k] ~f2[k] � � � ~f2[k�N2]]
T :

De�ne

� = [AT1 A
T
2 W

T ]T ;

f�[k] = H1(q
�1;�) � ~f1[k] +H2(q

�1;�) � ~f2[k]:

Then, the cost function to be minimized is

C(�) =
1

2
Eff [k]� f�[k]g

2 =
1

2
Efe[k]g2;



which is also a quadratic function of parameter vector �.
Following is the stochastic adaptive algorithm for the Par-
allel model.

A1;k+1 = A1;k + �e[k] ~F1[k];

A2;k+1 = A�2;k+1= k A
�

2;k+1 k;

where A�2;k+1 = A2;k + �e[k] ~F2[k];

Wk+1 = Wk + �e[k]H2(q
�1;�k)	[k]:

4. EXPERIMENTAL RESULTS

The experimental data were obtained from a data acquisi-
tion system for an actual hydraulic actuator. The system
was driven by an eccentric drive system to generate periodic
velocity and friction signals. The details of the data acquisi-
tion system are explained in [2]. In the simulation, the non-
linear mapping function g(�) was represented by Daubechies
wavelet basis function of order 3, 3 (�) [6], and the highest
resolution used was m = �1. For all cases, the order of
H(q�1), H1(q

�1), and H2(q
�1) was 8. Using higher order

for the MA �lters slightly improved the performance of the
models, but the di�erence were not signi�cant.

Fig.4 shows velocity and friction signals at various con-
ditions; (a) 130oF , 50 psi, T = 5 sec, (b) 130oF , 50 psi,
T = 1 sec and (c) 130oF , 200 psi, T = 5 sec, where T
represents the period of the essentric drive system.

Fig.5 and 6 show the experimental results of the Ham-
merstein model and the Parallel model, respectively. The
results show that, for both models, the estimated lip seal
frictions converge to the actual friction signal quite closely,
but the Parallel model works better than the Hammerstein
model. Note that the Parallel model can give a good es-
timate of the friction signal even before the convergence.
That is because the theoretical nonlinear model provides
a very good initial condition for the Parallel model. Also
note that the estimated nonlinear mapping function g(�)
of the Hammerstein model in Fig.5 have similar shape to
the theoretical nonlinear model except for the magnitude
and sign. The di�erence of the magnitude is caused by the
normalization process of the adaptive algorithm.

5. CONCLUSION

In this paper, two models for the nonlinear system of the
friction process of lip seal in hydraulic actuator have been
developed using the Hammerstein model structure. By pa-
rameterizing the nonlinear mapping function and choosing
MA �lter for the linear block, adaptive algorithms with a
unique global minimum was also derived. By incoperating
a theoretical nonlinear model of the lip seal in the Parallel
model, we were able to use a priori knowledge of the lip
seal to improve the system identi�cation model. The im-
provement came in two folds. First, the estimated friction
signal converged more closely to the actual friction signal.
Secondly, the theoretical model increased the convergence
speed of the model by providing a good initial condition.
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Figure 1: Hydraulic actuator in a power steering system.
f(t) : the lip seal friction, v(t) : velocity of the shaft.
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Figure 2: (a) Hammerstein model. (b) Parallel model.
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Figure 3: The theoretical steady state nonlinear model of
lip seal. Velocity/pressure vs. friction at 130 oF , and ve-
locity/temperature vs. friction at 200 psi.
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Figure 4: The velocity and friction signals measured at two di�erent conditions.
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Figure 5: Estimated friction signal: Hammerstein Model.
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Figure 6: Estimated friction signal: Parallel Model.


