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ABSTRACT

A new method for two-band approximation of excitation
signals in an LPC model, to improve speech naturalness in
very low rate coding, is proposed. Based on a simpli�ed
model of Multi-Band Excitation, the method accurately
determines the degree of periodicity, using the concept of
Instantaneous Frequency (IF) estimation in frequency do-
main. The harmonic structure in the spectrum of LPC
residual, within individual bands, is identi�ed based on

atness of the IF as a criterion for pitch and voicing de-
tection. On this basis, the excitation is modelled by com-
bining a prede�ned periodic signal in the lower band and a
random signal in the higher band. It is shown that this im-
proves considerably the naturalness of reconstructed speech
in very low rate coding in comparison with that obtained
using traditional binary excitation [1]. The performance
of the technique is also given in Temporal Decomposition
(TD) based coding at 800 b/s.

1. INTRODUCTION

To improve reconstructed speech quality in very low rate
coding, di�erent methods have been proposed in the liter-
ature [4], mostly working at rates above 2 kb/s. However,
it is found that simple versions of Multi-Band Excitation
(MBE) outperforms binarymodel and improves the speech
quality at low rates [1,3]. This is achieved through model-
ing speech spectrum within a number of individual bands
in MBE coder, while it is roughly approximated for entire
frequency band in the binary model [3].
Aiming at further simplifying MBE model, It was re-

ported in [3] that only about 6% of speech frames could
possess more than four di�erent voicing bands while 70%
could be described by just two bands, where the lower band
was almost always voiced. These �ndings led to more sav-
ing in the number of bits with near natural voice quality at
rates about 2.4 kb/s [1]. However, at rates below 2 kb/s,
even typical two band models fail, as these need more than
800 b/s to encode excitation parameters [3].
In this paper, we extend our previous work in this area

[6] and propose a new MBE-based model which signi�-
cantly enhance the synthesized speech naturalness, with

respect to that in binary model, at rates where typical
MBE models are inapplicable. This is achieved through
a novel approach to pitch and voicing detection using the
concept of Instantaneous Frequency (IF) estimation. The
performance of the model is given in Temporal Decompo-
sition (TD) based coding, where about 300 b/s are used
for the excitation signals.

2. PROPOSED METHOD

In the method we propose, the excitation applied to the
LPC �lter for each frame is modelled by a mixed signal
characterized by a spectrum composed of two overlapping
distinct bands, which is periodic in the lower band and ran-
dom in the higher band. Accordingly, spectral characteris-
tics of the signal change gradually at transition frequency
speci�ed by a time varying parameter. This parameter is
computed from the spectrum of the residual signal in an
LPC model using a novel periodicity measure, described in
the following.

The residual signal, e(n), is �rst calculated through in-
verse �ltering in an LPC model, for each frame of speech,
as:

E(k) = A(k)S(k); k = 1; 2; :::; N (1)

whereN is total number of samples of each frame of speech,
S(k) and E(k) are DFT (Discrete Fourier Transform) co-
e�cients of s(n) and e(n), n = 1; 2; :::; N , respectively, k is
frequency index, and A(k) represents the DFT coe�cients
of the inverse �lter.
The DFT of residual signal, E(k), k = 1; 2; :::; N , is then

reduced to E1(k), which is given as:

E1(k) = jE(k)j; k = 1; 2; :::; N=2 (N even) (2)

As e(n) is real, only the phase information is lost with such
reduction.
Then, E1(k), k = 1; 2; :::; N=2, is �ltered using a window

function in time domain with low phase distortion. This is
indeed a replica of band-pass �ltering in frequency domain,
which is expressed as:

E2(k) = E1(k) �Wt(k); k = 1; 2; :::; N=2 (3)



where Wt(k) represents the DFT coe�cients of the win-
dow, E2(k) shows the windowed signal in frequency do-
main, and asterisk stands for convolution.
As evident from equation (3), the input-output relation-

ship of the window appears in multiplication form in time
domain:

e2(n) = e1(n)wt(n); n = 1; 2; :::; N=2 (4)

where wt(n) is treated as the time window which is a
fourth order band-pass Butterworth function. This win-
dowing procedure reduces the e�ect of formants on the
pitch harmonics and smoothes the spectrum as well.
The lower and upper 3-dB attenuated points of the win-

dow function are obtained from the range for the funda-
mental frequencies expected. For a speaker independent
system, this range is 70-450 Hz. Accordingly, m1 and m2,
normalized 3-dB points of the window, are obtained from:

m1 =
Fs
70N

; m2 =
Fs

450N
(5)

where Fs is the sampling frequency in Hz and m1 and m2

are expressed as normalized number of samples in time
domain.
The technique could better be clari�ed if we take E1(k)

as a function of time which is to be �ltered. We need to
inspect spectrum of E1(k), DFTfE1(k)g, within a certain
range where fundamental frequency is expected. The �lter
used here, picks those components of DFTfE1(k)g which
are likely pitch harmonics. For the case of periodic speech,
E1(k) shows also periodicity in frequency domain as the
�ne structure of speech spectrum. It is indeed this pe-
riodicity in frequency domain which is considered by the
band-pass �lter, and is checked for the number of varia-
tions in the space designated by DFTfE1(k)g, in which
m1 and m2 are also described. As DFTfE1(k)g is indeed
a time function, the �lter characteristics is to be speci�ed
in time domain.
E2(k) is then considered as the signal spectrum to search

for pitch harmonics using the concept of IF estimation.
To do this, a typical IF estimation technique is applied to
E2(k). For a voiced frame, the fundamental frequency and
a number of its harmonics appear as equally spaced peaks
in E2(k) which provide the dominant frequency for the
variations inE2(k). This dominant frequency, representing
the pitch period, is detected through IF estimation.
For IF estimation, we use spectrogram technique which

employs a segment-based analysis using an appropriate
window [2]. Here, the windowing is performed in frequency
domain, on a band analysis basis, using Hanning window:

S(k; l) = j
1

M2

M1X

r=1

E2(k+ r)e
�j 2�r

M2
l
w(r)j2; (6)

k = 1; 2; :::; N=2; l = 1; 2; :::;M1;

where M1 = minfN=2; k + Mg � k; M < M2 < N=2,
S(k; l) is the l-th spectrogram coe�cient,M2 is the number
of DFT points, M is the pre-de�ned window length, and

w(r), r = 1; 2; :::;M1, is the Hanning window in frequency
domain. As evident, as long as k+M < N

2
, M1 equalsM .

The peak of spectrogram, S(k; l), l = 1; 2; :::;M1, gives
the IF of the spectrum, E2(k), across the frequency axis:

�(k) = maxfS(k; l)g; k = 1; 2; :::; N=2 (7)

�(k) represents IF of the spectrum over frequencies from 0
to Fs=2.
The transition frequency, ftrans, which speci�es a change

in the spectrum characteristics from periodic to random,
is obtained through measuring the 
atness of �(k) in a
number of sub-bands, nb. This is formulated as:

�(j) =
exp(log �j

2)

�j
2

; j = 1; 2; :::;
Fs
2nb

(8)

where j is the sub-band index, �j
2 = f�2j1 �

2

j2 :::g, and vec-
tor �j = f�j1 �j2 :::g is the jth part of �(k), k = 1; 2; :::; N=2,
located in jth band, whose 
atness is represented by �(j).
As evident, 0 < � � 1, which is used as an indication

of 
atness, where 1 is for an absolutely-
at vector (�j1 =
�j2 = :::). ftrans, is then calculated through comparing
�(j) with threshold th as:

ftrans = j0
Fs
2nb

(9)

where j0 = minfj < thg.
The threshold is calculated based on the mean of the

spectrum 
atness within a certain band, averaged over a
number of previous frames composed of voiced and un-
voiced, given as:

th = :5[
1

j2 � j1 + 1

j2X

j=j1

�(j) + 1] (10)

where j1 and j2 are pre-de�ned indices of the lowest and
highest sub-bands considered.
As expressed by equation (10), the spectrum is assumed

periodic at frequencies below ftrans while it is taken ran-
dom at frequencies over ftrans, with a resolution speci�ed
by nb. This assumption, although not always true, su�ces
to achieve a good naturalness, as will be shown later.
Figure 1 indicates three classes of speech, voiced, un-

voiced, and mixed, along with the corresponding IF repre-
sentations. As seen, a nearly 
at IF is obtained when there
are strong pitch harmonics in the residual signal spectra.

Pitch and Voicing Detection

Pitch is determined based on the average value of the
IF within a pre-speci�ed band below 1 kHz regardless
of voicing status. Pitch period is then obtained from,
lmax 2 f1; 2; :::; M1g, the time at which �(k) (peak of spec-
trogram) is reached, as:

T = Nlmax (11)

where T is the pitch period in terms of number of samples.



Model! A B C Quantization

ds (dB) 2.005 1.834 1.926 No
ds > 3dB(%) 8.25 1.23 1.36 No

ds (dB) 4.891 3.667 4.053 Yes
ds > 5dB(%) 12.02 8.71 11.79 Yes

Table 1. Overall spectral distortion with di�erent models
for excitation signal.

The degree of voicing, or periodicity, is determined by the
transition frequency. A low ftrans means that the periodic
portion of the excitation spectrum is dominated by the
random part and vise versa. For this reason, the accuracy
in pitch detection during unvoiced, which is intrinsically
ambiguous, is insigni�cant and non-e�ective in natural-
ness. Therefore, pitch values can be smoothed or simply
made equal to zero, during unvoiced, based on the same
criterion as used in pitch detection.
Figure 2 illustrates the pitch contour detected using the

proposed method along with ftrans contour and the cor-
responding speech waveform. To make a comparison with
pitch detection in binary model, the pitch contour detected
by cepstral method is also indicated. As seen, the di�er-
ences between two pitch contours occur mostly during un-
voiced, where cepstral pitch is set to zero.

Reconstruction of Excitation

We consider three di�erent models for excitation. Model
A, is a binary model in which excitation signal takes one
of two forms, periodic when frame is voiced, or random
noise when frame is unvoiced. This is controlled by a
voiced/unvoiced switch working typically based on a wave-
form periodicity measure applied to the residual signal in
LPC model. Pitch and voicing are determined using cep-
stral method and are quantized by 2 bits/20 msec. Gain
is also encoded by one bit/20 msec.
In models B and C, Excitation signal is reconstructed

through combining a periodic spectrum at lower frequen-
cies with a random spectrum at higher frequencies. Two
portions of the spectrum are then joint together at the
frequency speci�ed by ftrans, for each frame of speech.
In model B, a �xed shape is used for excitation waveform

which is a modi�ed version of LPC10 excitation waveform.
ftrans in model B is quantized using three bits. Pitch is
detected using the proposed method described in previous
section, quantized with 2 bits/20 msec, and gain is treated
similar to the gain in model A.
Model C uses two pre-de�ned di�erent waveforms for

excitation which are selected as excitation signal based
on spectral distance between original and reconstructed
speech signals, on a frame by frame basis. In this model,
two bits are allocated to ftrans, while pitch and gain are
encoded in the same way as that in model B.

3. PERFORMANCE EVALUATION

The method is evaluated through a perceptually based
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Figure 1. DFT of residual signal, IF estimation across
frequency axis, and corresponding speech waveform. Dot-
ted lines mark the boundaries of the band considered for
voicing detection.

spectral distance measurement of speech reconstructed us-
ing the proposed method in an LPC model. We developed
and used log-Bark spectral distance measure, de�ned as:

ds (dB) =
1

Nf

NX

i=1

(
1

15

15X

k=1

[10 logP i
2(k)� 10 logP i

1(k)]
2)1=2

(12)
where i is the frame index, Nf is the total number of
frames, P i

1(k) and P
i
2(k) are the normalized powers of orig-

inal and encoded speech signals for the ith frame at the
kth �lter of the Bark-scale �lter-bank [7].

4. EXPERIMENTAL RESULTS

Based on our previous work on Temporal Decomposition
(TD) based coding [5], we used the proposed method for
approximating the excitation in a TD based coder work-
ing at rate 800 b/s. For coding, ten LAR parameters were
used as spectral parameters where Cepstral coe�cients of
the LPC �lter impulse response were used for event detec-
tion (see [5]). We used the proposed method in the LPC
synthesizer, with non-quantized LPC parameters, to
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Figure 2. Top to bottom: pitch contour detected using
proposed method (solid) along with cepstral pitch (dashed),
time-varying ftrans over the utterance, and corresponding
speech waveform (/He stole a dime from a beggar/).

eliminate the e�ect of error in quantization of spectral pa-
rameters on the quality of synthesized speech.
For the excitation signal, all three models described ear-

lier were tested, where: N = 320, M = 32, M2 = 64,
Fs = 8000 Hz. The frame rate in the coder was 200
frame/secwhile gain and pitch could change every 20 msec.
The results for the overall spectral distortion, ds using a

large number of di�erent speech utterances from TIMIT
database, are shown in Table 1. In this table, percentages
of frames in each scheme, for which ds axceeds a certain
amount, are also indicated. These results were closedly
con�rmed by our informal listening tests.
The number of bits allocated to di�erent parameters used

in modeling the excitation are indicated in Table 2.

Model! A B C
Parameters#

V/UV 50 - -

Waveform - - 50

ftrans - 150 100

Total 50 150 150

Table 2. Number of b/s allocated to excitation modeling
parameters used in TD-based coding for the three excitation
models.

5. DISCUSSION

As shown in Table 1, spectral distortion in reconstructed
speech, con�rmed by our informal listening tests, signi�-
cantly decreases when voicing diversity in the signal spec-
tra is considered as a time-varying parameter. Particu-
larly, the method highly reduces the maximum spectral
error associated with the synthesized speech (see Table 1,
percentage of frames with distortion larger than a certain
amount). The slight di�erence between two models B and
C arises from the fact that perceptual distortion is more
sensitive to the error in the transition frequency, ftrans,
compared to the error in temporal features of excitation
signal. A sudden change in the spectral characteristics
happens when ftrans is displaced in frequency domain for
more than one fundamental frequency due to quantization
error. This causes a change in the number of pitch harmon-
ics in the periodic band which could generate perceivable
distortion during voiced. For this reason, female speech
could be more sensitive to this error and needs more bits
than male speech for quantizing ftrans, in general.
An important feature of the proposed method is robust-

ness to noise. This stems mainly from searching for pitch

harmonics in the frequency domain within independent
bands, provided by windowing the residual signal spec-
tra. In addition, the integration process associated with
the spectrogram technique for IF estimation, reduces the
e�ect of random noise on the signal spectra. This can be
seen in Figure 1-d representing the IF vector extracted
from a frame of noisy speech (the same voiced frame as
indicated in Figure 1-a) with 0-dB Signal-to-Noise Ratio.
The proposed method, can be used similarly at higher

rates, speci�cally in MBE based coding. The main advan-
tage at higher rates could be the possibility of sinusoidal
approximation of periodic part of excitation, as considered
in typical MBE coding.

6. CONCLUSION

We have proposed, in this paper, a new method for model-
ing excitation and pitch and voicing detection in very low
rate coding to improve naturalness in synthesized speech.
The method was evaluated using a perceptually-based log-
Bark spectral distance measure and informal subjective
tests which resulted in a considerable improvement in speech
quality in a two-band MBE based coding scheme, particu-
larly when the rate was highly restricted in TD-based cod-
ing. This is achieved through a novel approach to measure-
ment the periodicity in speech based on the 
atness of in-
stantaneous frequency of the LPC-residual spectra within
individual bands.
The method is also applicable at higher rates for accurate

excitation modeling and pitch and voicing determination
in MBE based speech coding, combined with traditional
sinusoidal approximation technique.
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