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ABSTRACT

In this paper we consider the problem of detect-
ing a subspace signal when there is uncertainty in the
subspace. Such uncertainty usually causes a mismatch
between the detector and the signal to be detected,
which may lead to signi�cant loss in performance. To
improve the robustness of the detection procedure we
apply robust adaptive subspace detectors based on ex-
tending the dimension of the signal subspace. We con-
sider two types of adaptive constant false alarm rate
(CFAR) detector structures for the extended subspace
detectors: CFAR generalized likelihood ratio detector
(CFAR GLR) and CFAR matched subspace detector
(CFARMSD). Using Monte-Carlo simulations, we study
the performance of the robust adaptive subspace detec-
tors for space-time processing.

1. INTRODUCTION

The problem of detecting subspace signals is of interest
in radar and sonar signal processing. The term sub-

space signal describes an L dimensional vector which
is known to belong to a given subspace of dimension
p < L. When the waveform of the signal is completely
known p = 1. For the case where the signal subspace is
not completely known, several authors have suggested
to improve the robustness of the detector by increas-
ing the dimension of the signal subspace [1], [2]. In
this paper we consider robust adaptive detectors based
on extended signal subspace and analyze their perfor-
mance.

We consider the following detection problem: We
are given L complex data samples, y = [y(0); � � � ; y(L�
1)]T . These data samples may represent L samples of
a scalar time series, or (as in the space time process-
ing application) N samples of an array of M elements
with L =MN . Based on these data, the detector must
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decide between two possible hypotheses: According to
the null hypothesisH0 the data consists of noise v only,
while according to the alternative hypothesis H1 the
data consists of the sum of the signal �x and noise v,
y = �x + v. The signal x obeys the linear subspace
model, x = H��� where H 2 CL�p and ��� 2 Cp. The
noise is complex Gaussian with zero mean and covari-
ance �2R.

Most studies of the above problem have assumed
that the signal subspace matrixH is completely known.
Recently, the case of unknown signal subspace matrix
was studied in [1]. However, the analysis there is lim-
ited to the case of known noise covariance R. In this
paper we extend the analysis to the more realistic case
of unknown noise covariance.

2. ADAPTIVE SUBSPACE DETECTORS

In this section we review and present some results on
adaptive subspace detectors.

When both R andH are known the generalized like-
lihood ratio (GLR) test of H0 versus H1, for unknown
noise variance �2, is [3]

�(y) =

�
1 t0(y) > �0
0 t0(y) < �0

(1)

where 1 stands for H1, 0 stands for H0, and

t0(y) =
y�R�1H(H�R�1H)�1H�R�1y

y�R�1y
(2)

This GLR detector is uniformly most powerful (UMP)
invariant within a certain class of tests and hence op-
timal [4]. In addition it has constant false alarm rate
(CFAR) independent of the noise variance �2.

When R is unknown, an adaptive subspace detector
may be obtained by replacing R by its estimate R̂. This
type of detector was suggested in [3]. Following [3] we
will refer to this detector as constant false alarm rate



(CFAR) matched subspace detector (MSD) or simply
CFAR MSD.

The adaptive CFAR MSD is not equivalent to the
generalized likelihood ratio test for this problem. The
GLR test for one-dimensional signal subspace was de-
rived by Kelly in [5]. [2] extends Kelly's derivation for
arbitrary dimension p < L of the signal subspace. In
the following we derive a new expression for the GLR
test statistic, which is considerably simpler than the
one in [2]. As in [5] and [2] we assume that noise co-
variance matrix is estimated from a set of K secondary
complex L-vectors, yk, k = 1; � � � ;K. The secondary
vectors are assumed to be mutually independent and to
have the same statistical properties as the interference
in the primary vector y.

It follows from the derivation in [5] and [2] that the
GLR test statistic for known signal (known ���) is given
by,

`(yj���) =
1 + y�S�1y

1 + (y �H���)�S�1(y �H���)
(3)

where S =
PK

k=1 yky
�

k.

To obtain the GLR test statistic we need an esti-
mate of ��� which maximizes (3). The maximum is at-
tained when the quadratic (y � H���)�S�1(y � H���) is
minimized with respect to ���. The quadratic has the
form of a weighted least squares cost function and the
minimizing ��� is the weighted least squares solution,

���0 = (H�S�1H)�1H�S�1y (4)

Substituting (4) into (3) we get the GLR test statistic

`(y) =
1 + y�S�1y

1 + yHS�1y � y�S�1H(H�S�1H)�1H�S�1y
(5)

A somewhat simpler equivalent test may be ob-
tained by de�ning the quantity �(y)

�(y) =
y�S�1H(H�S�1H)�1H�S�1y

1 + yHS�1y
(6)

As `(y) = 1=(1� �(y)) the test `(y) > `0 is equivalent
to the test �(y) > �0 where �0 = (`0 � 1)=`0.

Both the adaptive CFAR MSD and the adaptive
CFAR GLR subspace detectors are based on the as-
sumption that the signal subspace is known. In the
following section we consider the case where there is
uncertainty in the signal subspace, and introduce ro-
bust versions of these detectors.

3. EXTENDED SUBSPACE DETECTORS

When the signal matrix H is not known, the detec-
tor uses instead an assumed matrix F 2 CL�Ns . The
performance of the mismatched detector deteriorates
rapidly as the mismatch between the assumed and ac-
tual signal subspaces grows, as illustrated in the exam-
ple of Figure 1. For the case of known noise covariance
we have shown in [1] that robust detectors may be ob-
tained by increasing the dimension of the assumed sig-
nal subspace and properly designing the matrix F . In
the following we discuss the design of robust detectors
for the case of unknown noise covariance. To enhance
the clarity of the paper, we present the discussion in
the context of the space time processing application.
The results may readily be applied to a wide range of
subspace detection problem.

3.1. Application to Space Time Adaptive Pro-

cessing

In space time processing the problem of detecting a tar-
get at a given bearing and with a given radial velocity
may be formulated as a subspace signal detection prob-
lem where the signal subspace has dimension p = 1 and
the signal matrix H becomes [6],

H = h = b(!) 
 a(�; �) (7)


 denotes the Kronecker product operator. a is the
M�1 spatial steering vector. Assuming that the radar
antenna is a uniformly spaced linear array, a may be
written as

a( ) = [1; ej2� ; � � � ; ej(M�1)2� ]T (8)

 = (d=�0) cos � sin� is the normalized spatial fre-
quency, � is the elevation angle, � is the azimuth, d
is the inter-element spacing and �0 is the wavelength
corresponding to the center frequency of the radar.

b(!) is the N �1 temporal steering vector. ! is the
normalized Doppler frequency of the target ! = fdTr,
where fd is the Doppler frequency and Tr is the pulse
repetition interval of the radar.

b(!) = [1; ej2�!; � � � ; ej(N�1)2�!]T (9)

In practice it is not possible to test for the exis-
tence of a target in all bearings and Doppler frequen-
cies. The set of all possible bearings and Doppler fre-
quencies is represented by a �nite grid. For each cell
in this grid, the task of the detector is to test for the
existence of the target in this cell. In this scenario,
however, the target signal can no longer be represented
by a one-dimensional subspace as in Eq. (7). Then, it



is intuitively appealing to replace the one-dimensional
subspace by a subspace of a larger dimension Ns > 1.
This leads to the following signal model

x = F��� (10)

where F 2 CL�Ns and ��� 2 CNs .
The resulting test statistic for the adaptive CFAR

MSD is given by

T (y) =
y�S�1F (F �S�1F )�1F�S�1y

y�S�1y
(11)

and the test statistic for the adaptive CFAR GLR de-
tector is

�(y) =
y�S�1F (F�S�1F )�1F�S�1y

1 + y�S�1y
(12)

The performance of these detectors depends on the
dimension of the extended signal subspace and the ac-
tual choice of the extended signal matrix F . In [1]
we presented two di�erent approaches for constructing
the signal matrix F : the lattice-based approach and
the eigen-analysis based approach. The eigen-analysis
approach was �rst introduced in [2] for the problem
of detecting a signal whose Doppler frequency is not
known precisely. [1] extends the approach for space
time processing where there is uncertainty both in the
Doppler and the bearing of the target. Numerical ex-
periments indicate that the eigen-based approach leads
to a better detection performance, both for the known
and unknown noise covariance cases. We therefore limit
our discussion to the eigen-analysis based approach.

Let us represent the uncertainty in the target Dopp-
ler by letting ! be contained in the interval (!0 �
�!
2 ; !0 + �!

2 ), where !0 is known and �! denotes
the uncertainty in the Doppler frequency of the sig-
nal. Similarly, we represent the uncertainty in the spa-
tial frequency by letting  be contained in the interval
( 0�

� 
2 ;  0+

� 
2 ), where  0 is known and � denotes

the uncertainty in the spatial frequency of the signal.
Assuming that the normalized Doppler frequency

and the normalized spatial frequency of the signal are
(individually) uniformly distributed in the correspond-
ing uncertainty intervals we can express the matrix
Rx = E[xx�] as

Rx = Rb 
 Ra (13)

where the elements of Rb and Ra are

Rb(n1; n2) = sinc[(n1 � n2)�!]

Ra(m1;m2) = sinc[(m1 �m2)� ] (14)

The matrix F is constructed as follows: For given
values of the parameters � and �! we evaluate the
eigen values and eigen vectors of the above matrix Rx
and use the eigen vectors corresponding to the domi-
nant eigen values as basis vectors for the signal sub-
space. The number of dominant eigenvalues may be
de�ned as the minimum number of eigen values whose
sum exceeded �L, where 0 < � < 1 is close to unity
(e.g. � = 0:99). All eigenvalues included in the sum
are de�ned as dominant eigen values. Note that the
sum of all eigenvalues of Rx is trace(Rx) = L. The re-
sulting number of dominant eigen values will be called
the e�ective dimension of signal subspace.

We will refer to the resulting detectors as the robust
adaptive CFAR MSD and the robust adaptive CFAR
GLR. In the following we analyze and compare the per-
formance of these detectors.

3.1.1. Performance Analysis
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Figure 1: PD versus PFA for an accelerating target
at uncertain direction. SNR = 15 dB,  = � =2.
Adaptive CFAR GLR (solid line), Adaptive CFAR
MSD (dashed line), CFAR GLR for known noise
covariance (dotted line).

We performed Monte-Carlo simulations to study
the performance of the robust adaptive subspace detec-
tors. We assume that the array has four elements and
the length of processing interval is four samples. The
data has been generated assuming that R = I where
R is the noise covariance matrix. The number of snap-
shots for estimating the noise covariance is K = 32.

We considered two scenarios. In the �rst scenario
the target has uncertain Doppler and bearing while the



second scenario corresponds to a maneuvering target
at an unknown bearing. For both scenarios the robust
detectors were designed to detect a target of uncer-
tain Doppler and bearing whose spatial frequency is in
the interval (�� =2;� =2) and whose temporal fre-
quency is in (��!=2;�!=2) with �! = � = 0:3.
Due to space limitations, we will only present results
for the scenario with the maneuvering target at an un-
certain bearing. In this scenario the target has normal-
ized spatial frequency  = � =2 and constant radial
acceleration, so that its normalized temporal frequency
increases linearly from ��!=2 to �!=2.

In Figure 1 we plot the probability of detection as
a function of the false alarm probability for SNR of
15 dB. The SNR is de�ned as x�R�1x. Parts A and
B of this �gure demonstrates the need for robust de-
tectors. Part A shows the receiver operation curves
(ROC) for the case where the signal subspace is known
at the detector. In this case both the adaptive CFAR
GLR (solid line) and the adaptive CFAR MSD (dashed
line) are perfectly matched to the signal. The ideally
matched CFAR GLR for the case of known noise co-
variance (dotted line) is included for reference. As may
be expected the adaptive CFAR GLR performs slightly
better than the adaptive CFAR MSD. Part B of the
�gure shows the ROCs for the case of mismatch be-
tween the actual and assumed signal subspaces. In this
case the subspace detectors are tuned to a target with
 = ! = 0. All three detectors exhibit signi�cant per-
formance losses relative to the corresponding matched
detectors. As for the ideally matched detectors, the
adaptive CFAR GLR performs better than the adap-
tive CFAR MSD.

In Part C we demonstrate the performance of the
robust adaptive subspace detectors. The dimension of
the extended subspace is Ns = 4. Contrary to the pre-
vious examples, it appears that in this case the robust
adaptive CFAR MSD out performs the robust adaptive
CFAR GLR. Comparing to Part B we observe that all
robust detectors exhibit performance gains relative to
their mismatched counterparts. Similar observations
are obtained for the scenario in which the target has
uncertain Doppler and bearing.

4. SUMMARY

We considered the problem of detecting a subspace sig-
nal when there is uncertainty in the signal subspace.
Such uncertainty usually causes a mismatch between
the detector and the signal to be detected, which may
lead to signi�cant loss in performance. To improve the
robustness of the detection procedure we proposed ro-
bust subspace detectors based on extending the dimen-

sion of the signal subspace. We considered two types
of adaptive constant false alarm rate (CFAR) detector
structures for the extended subspace detectors: CFAR
generalized likelihood ratio detector (CFAR GLR) and
CFARmatched subspace detector (CFARMSD). Using
Monte-Carlo simulations, we studied the performance
of the robust adaptive subspace detectors for the space-
time processing application, focusing on the case of a
maneuvering target at an uncertain bearing. In this
application the target may be represented as a one-
dimensional subspace signal. As may be expected, the
one-dimensional ideally matched adaptive CFAR GLR
slightly out performs its CFARMSD counterpart. Sim-
ilarly, the one-dimensional mismatched adaptive CFAR
GLR exhibits better performance than its CFAR MSD
counterpart. However, the results are di�erent when
the robust versions of these detectors are considered.
It appears that the robust adaptive CFAR MSD out
performs its CFAR GLR counterpart. Similar obser-
vations are obtained for the case where the target has
uncertain Doppler and bearing
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