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ABSTRACT

Several techniques for electronic image stabilization have recently
been proposed, but verylittle research has beendone to compare
and evaluate such techniques. In this paper we propose a set of
measures to evaluate image stabilization algorithms based of their
fidelity, displacement range, and performance. These measures do
not require calibration or ground truth, making the evaluation pro-
cedure very simple and flexible, i.e., it provides the means to com-
pare techniques based on different motion models. We have used
this procedure to compare several image stabilization algorithms
and also evaluate the sensitivity of these algorithms to some of its
parameters. This same procedure could also be used for the com-
parison and evaluation of motion estimation and image registration
techniques.

1. INTRODUCTION

Electronic image stabilization (EIS) is the process of generating
a compensated video sequence where any and all unwanted cam-
era motion is subtracted from the original input. Most proposed
EIS systems compensate for all motion [3, 4, 6, 7, 8, 10], produc-
ing a sequence where the background remains motionless. Other
techniques only subtract the 3D rotation of the camera [5, 9, 11],
generating a derotated sequence.

Since motion estimation is the main component of an EIS sys-
tem, the evaluation of the system could be based on the perfor-
mance of the motion estimation module alone, in which case one
could use synthetic or calibrated sequences where the inter-frame
motions are known [2].

Aside from the issue of generating sequences with known mo-
tion, most EIS systems use approximate parametric global trans-
formations, which creates the problem of finding the optimal trans-
formation from the ground truth data, so that the motion estimates
can be evaluated in terms of a distance measure from these opti-
mal parameters. Another important issue is how to compare the
performance of systems based on different motion models, since
distance measures might be model-dependent.

Other methods of evaluating image stabilization systems are
presented in [1, 8]. [1] compares the performance of different sta-
bilization algorithms based on the accuracy of a real-time object
tracker, and [8] considers the maximum displacement velocity in
pixels per second, computed as the product of the frame rate and
the maximum image displacement between frames.
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In this paper, we evaluate the fidelity of image stabilization
techniques using the peek signal-to-noise ratio (PSNR) between
stabilized frames. This method does not require the use of cal-
ibrated sequences to compare different systems, and provides a
simple means of comparing systems based on different motion
models. Synthetic sequences are used to measure other system
properties, such as the range of displacements within which they
operate.

2. IMAGE STABILIZATION ALGORITHM

A general image stabilization algorithm is composed of a motion
estimation module (ME), a motion compensation module (MC),
and an image composition module (IC), as shown in Figure 1. ME
estimates the motion between frames, and sends the motion param-
eters to MC, which computes the global transformation necessary
to stabilize the current frame. IC then warps the current frame ac-
cording to that transformation, generating the stabilized sequence,
and possibly image mosaics.
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Figure 1: Modules of a general EIS system.

The EIS algorithms evaluated in Section 4 are based on the
system described in [8], which uses a multi-resolution feature-
based motion estimation technique that fits a four parameter sim-
ilarity model to the feature displacements, and then combines the
interframe motion to generate the transformation which stabilizes
the current frame. We have extended the algorithm to include the
Euclidian and affine motion models.

The three parameter Euclidean model compensates for trans-
lations and rotation around the optical axis. The similarity model
has an extra parameter to include scaling; and the affine model re-
quires 6 parameters to accommodate different horizontal and ver-
tical scaling, and skewing. In Section 4 we compare the perfor-
mance of these models for several real and synthetic image se-
quences, and also the behavior of the algorithm when some of its
parameters are changed.

3. EVALUATION PROCEDURES

We have designed three evaluation procedures to measure the fi-
delity, displacement range, and performance of EIS algorithms.
Fidelity is a measure of how well stabilization is compensating the
motion of the camera, i.e., how precisely the motion model fits



the actual camera motion.Displacement rangeis defined by the
minimum and maximum image displacements supported by the
stabilization system; andperformanceis defined by the maximum
displacement velocity which the system can compensate for, in
pixels per second, given by the product of the frame rate and the
maximum interframe translational displacement.

3.1. Fidelity

Intuitively, when all motion is compensated for, there should be no
residual motion after stabilization, i.e., the difference between two
stabilized images should be zero for every pixel. Divergence from
zero can be caused by noise, estimation errors, distortions due to
limitations of the motion model and interpolation during warping,
etc. For stabilization purposes, the PSNR can be considered as a
measure of the departure from the optimal case, or as a measure
of the overlap between two images, which is maximized when the
images are identical.

The PSNR between stabilized frames is used to measure the
fidelity of a system. The PSNR betweenI1 andI0 is defined as

PSNR(I1; I0) = 10 log
2552

MSE(I1; I0)
(1)

where the mean squared error (MSE) is a measure of the average
departure per pixel from the desired stabilized result. The PSNR
gives a relation between the desired output and the residual image,
in terms of their powers (for gray images with a maximum inten-
sity of 255). The higher the PSNR between two stabilized frames,
the better the fidelity of the system.

The above formulation does not account for non-overlapping
regions where compensation cannot be done. If the PSNR were
computed just over the overlapping regions, the fidelity measure
would not be meaningful for small overlapping areas. In order
to handle these cases, nonoverlapping pixels are copied from the
current frame before computing the PSNR. The worst scenario oc-
curs when the global transformation warps the image completely
off the reference frame, and for this case a lower bound (LB) can
be defined as the PSNR between the reference and current frames
without compensation. We assume that the system has produced
a valid output whenever the PSNR between stabilized frames is
higher than LB (or sometimes LB plus a constant offset). Erro-
neous motion estimates can in fact produce PSNRs below LB.

To implement this procedure, some routines of the IC mod-
ule have to be modified to account for the non-overlapping areas.
Given a particular stabilization system and an arbitrary sequence,
two measures are computed. The first is a measure of the inter-
frame transformation fidelity (ITF), and the second measures the
global transformation fidelity (GTF). ITF is defined as the PSNR
between two consecutive stabilized frames, and GTF corresponds
to the PSNR between the reference frame and the current stabilized
frame. The lower bounds on ITF and GTF will be respectively de-
noted by LBi and LBg.

3.2. Displacement Range

The second procedure determines the range of displacements sup-
ported by a system. Some synthetic image sequences were created
for this procedure as follows: given a single imageI of large di-
mensions, a window of smaller size (e.g.128�128) is first placed
at a fixed position on the image. This window is used to com-
pose the output sequence. The first frame is defined by the win-
dow itself, and the displacement velocity increment (acceleration)

is set to zero. The following frames are created by incrementing
the displacement velocity by a certain amount (acceleration), and
warpingI according to the new displacement velocity using bilin-
ear interpolation. As a result, the contents of the window, when
placed on the warped image, change proportionally. The precision
of this measurement is defined by the acceleration step between
frames.

For very small displacements, the PSNR between consecutive
frames is very high, i.e., LBi is very high. If the errors in the es-
timated parameters are bigger than the true transformation param-
eters, ITF is lower than LBi. As the displacement increases, LBi

decreases and ITF increases if the displacement is large enough to
be estimated. Therefore, one curve eventually crosses the other.
This crossing point is used to define the minimum image displace-
ment for which the system can compensate.

To determine the upper bound on the range of displacements,
some synthetic image sequences were created using larger accel-
eration steps between frames. It is expected that when the system
is working properly, ITF remains higher than LBi, which is low
for large inter-frame displacements. When the displacement is too
large, the system produces invalid motion estimates, causing ITF
to drop and possibly become lower than LBi. We define the max-
imum image displacement to be the point where the ITF curve
crosses the LBi curve.

3.3. The Performance Measure

Frame rate is also an important feature of EIS systems, but this
measure alone might be misleading since the robustness and ac-
curacy of the system can be easily sacrificed to increase speed.
Performance will be defined as the maximum displacement veloc-
ity supported by the system, which is defined by the product of the
frame rate and the maximum translational displacement, in pixels
per second.

4. EXPERIMENTAL RESULTS

We used the algorithms mentioned in Section 2 for all experi-
ments. These standard algorithms were configured to use the same
settings for all parameters, such as the number of feature points,
pyramid levels, search window sizes, etc. Sixteen features were
automatically detected and tracked using search windows of size
5 pixels per pyramid level. Two pyramid levels were constructed
for images of resolution128 � 128, and three levels were used
for images of higher resolution. All synthetic sequences were of
resolution128� 128, and all real uncalibrated sequences were of
resolution320 � 240.

Figure 2 shows the results of evaluating the three systems us-
ing two uncalibrated sequences. The first column shows the results
for the UGV sequence, which is composed of 30 frames of real
video, where the camera starts zooming out and than pans from
right to left. The graph on top of the first column shows the ITF
and LBi for all frames. Observe that the results for the affine- and
similarity-based systems are very similar, while the Euclidean sys-
tem performs poorly during the first ten frames, which correspond
to the zooming part of the sequence. This result is expected since
the Euclidean group does not compensate for scaling.

After the 20th frame, the sequence does not overlap the refer-
ence frame. This can be observed from the GTF curves shown in
the bottom graph in the first column of Figure 2. The GTF drops
from frame to frame since each new frame has less overlap with the
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UGV sequence: PSNR between stabilized frames
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Building sequence: PSNR between stabilized frames
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UGV sequence: PSNR between frame and reference
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Building sequence: PSNR between frame and reference

Figure 2: Results from Experiment 1. The (.*.) curve shows the results for the affine fit, (.+.) for affine using 20 feature points, (-) for
similarity, (-.) for Euclidean, and (.o.) for lower bound.

reference frame. The GTF of the Euclidean system is considerably
smaller due to the lack of scaling compensation.

The second column of Figure 2 shows the ITF and GTF for
the Building sequence. This sequence is also composed of 30
frames of real video, and contains a simple pan from left to right.
In this case, since there is no change in scale, all the curves are
very similar, i.e., all systems perform equally well. It is impor-
tant to notice from the ITF graph that feature outliers have much
more influence on the performance of higher-order models. To test
this hypothesis, the affine system was reconfigured to use 20 fea-
tures instead of 16 (shown by the (.+.) curve); the performance
improvement can be seen from the ITF and GTF curves. Since
the same 16 features are used for all systems, the least-square fit
seems to be more robust for the lower-complexity models. Both
the UGV and Building sequences are available in MPEG format at
http://www.cfar.umd.edu/˜carlos/ICASSP98/evaluation.html.

Figure 3 shows the results of determining the minimum dis-
placement for each system. Two synthetic sequences composed of
19 frames each were created for this experiment. The inter-frame
acceleration step was set to1=10th of a pixel/frame2, i.e., frame
Fn has a displacement ofn=10 pixel fromFn�1, for n > 0. The
original (Bahia and Boat) sequences are available at the same URL
address. For this experiment we introduced a fourth system based
on the Euclidean group, but with a simpler grid-to-grid (no sub-
pixel precision) feature tracker. The measurements for this system
are shown by dotted lines with crosses (.+.). For the standard sys-
tems, ITF becomes larger than BLi after the second frame, i.e., the
minimum displacement is below 0.3 pixel/frame. For the new sys-
tem, the minimum displacement is below 0.6 pixel/frame for the
Boat sequence, and below 0.7 pixel/frame for the Bahia sequence.

Figure 4 shows the results of determining the maximum dis-

placements. Similar sequences were created, now with an accel-
eration of 1 pixel/frame2. The maximum displacement is a prop-
erty of the system related to the search sizes and number of pyra-
mid levels. The search sizes were set to�5 pixels on each level,
and two pyramid levels were constructed. A fourth system with
the same search window size but only one pyramid level (without
multi-resolution) was also tested; its results are shown by the (.+.)
curves.

For the Boat sequence, the maximum displacement of the stan-
dard systems lies between the 13th and 14th frame, so that it is safe
to say that it is above 13 pixels. For the Bahia sequence, which is
of lower quality, this also seems to be the case, although there is
a considerable drop after the 10th frame. For the system using
only one pyramid level, the maximum displacement lies around 5
pixels, which corresponds to the size of the search window. The
analysis of minimum and maximum displacements is not limited
to translations. It is simple to create a synthetic sequence by vary-
ing any parameter of a transformation group, and then empirically
determining the system’s operating range for the sequence.

All systems were implemented on a real-time image process-
ing platform, and they are able to process images of resolution
128� 120 pixels at 17 frames per second (for the above standard
configuration), i.e., these systems are able to stabilized camera mo-
tions of up to 221 pixels/second.

5. CONCLUSION

We have proposed a simple procedure for evaluating the fidelity,
range of displacements, and performance of EIS algorithms. Al-
though these measurements are not absolute since they depend on
the sequence being stabilized, and on particular system configura-
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Bahia sequence: PSNR between stabilized frames
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Boat sequence: PSNR between stabilized frames

Figure 3: Results from Experiment 2 - determination of minimum
translational displacement. The (.*.) curve shows the results for
the affine fit, (-) for similarity, (.+.) for Euclidean without subpixel
precision, (-.) for Euclidean, and (.o.) for lower bound.

tions, they can be used to compare different systems, even those
based on different transformation models. They can also be used
to evaluate other image registration or global motion estimation
techniques, or as development tools to evaluate different configu-
rations.

The evaluation procedures require a few changes on the im-
age composition module, but do not require calibrated sequences.
We have compared the performance of stabilization systems based
on three different transformation groups, the Euclidean, similarity,
and affine groups, and our experimental results show that applying
more complex models to fit the data does not necessarily produce
better results. Actually, it turns out that the more complex mod-
els are more sensitive to tracking errors, causing them to perform
worse than the simpler models.
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