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ABSTRACT

We introduce a new approach to adapt a 2-channel FIR
orthonormal �lter bank to the input second order statis-
tics. The problem is equivalent to optimizing the magnitude
squared response F (ej!) = jH(ej!)j2 of one the subband �l-
ters for maximum energy compaction under the constraint
that F (ej!) is Nyquist(2). The novel algorithm enjoys im-
portant advantages that are not present in previous work.
First, we can ensure the positivity of F (ej!) over all fre-
quencies simultaneously with the Nyquist constraint. Sec-
ond, for a �xed input power spectrum, the resulting �lter
Fopt(z) is guaranteed to be a global optimum due to the
convexity of the new formulation. The optimization prob-
lem is expressed as a multi-objective semi de�nite program-
ming problem which can be solved e�ciently and with great
accuracy using recently developed interior point methods.
Third, the new algorithm is extremely general in the sense
that it works for any arbitrary �lter order N and any given
input power spectrum. Finally, obtaining Hopt(e

j!) from
Fopt(e

j!) does not require an additional spectral factoriza-
tion step.

1. INTRODUCTION

There has been a considerable interest in optimizing �lter
banks when quantizers are present [1, 2, 3, 4, 5, 6]. Given a
�xed budget of b bits for the subband quantizers, the goal is
to simultaneously optimize the analysis and synthesis �lters
and to choose a subband bit allocation strategy such that
the average variance of the error e(n) at the output of the
�lter bank is minimized.
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Figure 1: Schematic of the FIR energy compaction problem.

The energy compaction problem. Consider the scheme
shown in Fig. 1. A wide-sense stationary (WSS) input x(n)
passes through an FIR �lter H(ej!) and is downsampled
to produce an output y(n). With the input power spectral
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density Sxx(e
j!) �xed, the compaction �lter problem is to

�nd H(ej!) such that the variance of the output, given by

�2y =

Z �

��

jH(ej!)j2Sxx(e
j!)

d!

2�
(1)

is maximized under the constraint

1

M

M�1X
k=0

jH(ej(!�2�k=M)))j2 = jH(ej!)j2j#M = 1 (2)

The constraint (2) means in particular that the magnitude
squared response jH(ej!)j2 is Nyquist(M). For the case of
a two channel orthonormal �lter bank (M = 2), the prob-
lems are equivalent: optimizing one of the subband �lters
for maximum energy compaction is equivalent to optimizing
a two channel orthonormal �lter bank according to the input
signal statistics. Indeed, we can easily show that the cod-
ing gain of an orthonormal �lter bank under optimum bit
allocation and with the high bit rate quantizer assumptions
is given by:

GSBC(2) =
1p

Gcomp(2; N)(2�Gcomp(2; N))
(3)

where Gcomp(2; N) is the so called compaction gain and
is equal to �2x0=�

2
x. Note that the maximum possible com-

paction gain Gcomp(2; N) is equal to two whereas the coding
gain GSBC(2) can be arbitrarily large.

2. THE PRODUCT FILTER APPROACH

From (1) and (2), we can immediately observe that the
optimum solution, if it exists, is only a function of jH(ej!)j2.
By denoting the product �lter H(z)H(z�1) by F (z), the
output variance �2y in (1) can be rewritten as

�2y = r(0) + 2

NX
n=1

f(n)r(n) (4)

and the constraint (2) becomes

f(Mn) = �(n) (5)

F (ej!) � 0 8 ! (6)



where r(i) denotes the ith autocorrelation coe�cient of the
input x(n). The objective function is now linear in the
optimization variables f(n); n � 1 at the expense of an
additional constraint, namely equation (6) which we shall
refer to as the positivity constraint. The major di�culty
with the product �lter approach is to simultaneously satisfy
the positivity and Nyquist constraints. A standard way to
solve such optimization problems is to consider a �nite set
of discrete frequencies f!i; 0 � i � Lg over the continuous
frequency axis and enforce the positivity constraint only at
those frequencies (see for example [7, 8]). The main problem
with the \discretization" approach is that, in general, the
resulting Gopt(e

j!) could be negative between the discrete
frequencies no matter how large L is which, in turn, creates
an infeasible spectral factorization step.

We show next, using a well known result from linear
system theory, that the positivity constraint can be satis-
�ed over all ! at the expense of N(N + 1)=2 additional
optimization variables.

3. THE STATE SPACE SOLUTION

Since F (z) = H(z)H(z�1), the product �lter is a two sided
symmetric sequence and we can therefore write F (z) as
D(z) + D(z�1). The function D(z) completely character-
izes F (z) and it is natural to wonder whether the positivity
condition on F (ej!) can be reformulated in terms of some
other condition(s) on D(ej!). The answer turns out to be
yes and is established by the well known discrete time
positive real lemma [9]. We �rst start with a de�nition.
De�nition 1. Discrete positive real functions. A square
transfer matrix (function) D(z) whose elements are real ra-
tional functions analytic in jzj > 1 is discrete positive real
if, and only if, it satis�es all the following conditions :

poles of D(z) on jzj = 1 are simple (7)

D(ej!) +D(e�j!) � 0 8 ! at which D(ej!) exists (8)

Furthermore, if z0 = ej!0 , !0 real, is a pole of D(z) and
if K is the residue matrix of D(z) at z = z0, the matrix
Q = e�j!0K is hermitian non negative de�nite.
Assume now that D(z) has the following state space real-
ization :

x(n+ 1) = Adx(n) +Bdu(n)

y(n) = Cdx(n) +Ddu(n)
(9)

where Ad is N � N , Bd is N � P , Cd is L � N , and Dd

is L � P . For our case, P = L = 1. Then, the following
lemma can be established.
Fact 1. The discrete time positive real lemma [9]. Let
D(z) be a transfer matrix (function) with real rational ele-
ments that is analytic in jzj > 1 with only simple poles on
jzj = 1. Let (Ad; Bd; Cd; Dd) be a minimal realization of
D(z). Then, D(z) is discrete positive real if, and only if,
there exist a real symmetric positive de�nite matrix Pd and
real matrices Wd and Ld such that :

Pd �AT
d PdAd = LTd Ld (10)

CT
d �AT

d PdBd = LTdW
T
d (11)

Dd +DT
d �BT

d PdBd = W T
d Wd (12)

The above equalities (10-12) can be rewritten as the follow-
ing matrix inequality :

�
Pd �AT

d PdAd CT
d �AT

d PdBd

Cd �BT
d PdAd Dd +DT

d �BT
d PdBd

�
� 0 (13)

where the notation� indicates that the above matrix should
be positive semi-de�nite. Equation (13) represents there-
fore an equivalent condition for the positivity constraint.
Assume now that D(z) is implemented in a direct form
structure with the following state space representation:

Ad =

�
0 I
0 0

�
; Bd =

2
664

0
0
...
1

3
775

Cd = [ f(N) : : : f(1) ]; Dd =
1

2
(14)

Clearly, this state space realization is minimal since the
number of delay elements is equal to the degree of D(z).
Then, the Nyquist constraint can be written as a linear
equality constraint:

Q CT
d = 0 (15)

where 0 is the zero vector and Q is a diagonal matrix with
diagonal elements 2 f0; 1g. The positions of the unity ele-
ments are determined by N . For example, for N = 5 and
M = 2, the diagonal elements are f0 1 0 1 0g. In conclu-
sion, we can represent the positivity constraint as a \linear"
matrix inequality (LMI) whose entries are a�ne functions
of the variables Pd and Cd, and the Nyquist constraint as
an equality constraint on Cd. The optimization problem
described by (4), (13) and (15) can be solved at this point.
In speci�c, we can obtain a global optimum Cdopt and a
feasible matrix Pd that will meet the constraints and maxi-
mize the objective function. We can then spectral factorize
Fopt(z) to obtain Hopt(z) using any of the well known algo-
rithms (see for example [10, pages 854{856]). It turns out
however that the spectral factorization step can be com-
pletely avoided by writing the state space representation
of the minimum phase spectral factor, Hmin(z), in terms
of the matrices Ad; Bd; Cd; Dd and a particular Pd, namely
the minimum element Pdmin

of the convex set of positive
de�nite matrices satisfying equation (13) and (15). This is
established in the next section.

4. THE SISO MINIMUM PHASE SPECTRAL
FACTOR

De�nition 2. Minimum element. We say that Pdmin
2 S

is a minimum element of S with respect to the (strict)
generalized inequality � (�) if for every P 2 S we have
Pdmin

� (�)P . Note that Pd2 � Pd1 is equivalent to
Pd2 � Pd1 is positive semi de�nite. If a set has a minimum
element, this element is unique.
Theorem. Let F (z) = D(z) + D(z�1) be a real rational
function whose elements are analytic in jzj > 1. Assume
that D(z) satis�es the discrete time positive real lemma
with a minimal realization (Ad; Bd; Cd; Dd). In particular,



F (ej!) � 0 8 !. Then, the minimum phase spectral factor
Hmin(z) of F (z) can be expressed in the form:

Hmin(z) =Wd + LTd (zI �Ad)
�1Bd (16)

where

Wd = (Dd +DT
d �BT

d PminBd)
1=2 (17)

LTd =
(CT

d �AT
d PminBd)

(Dd +DT
d �BT

d PminBd)1=2
(18)

and Pdmin
is the minimum element in the convex set of

symmetric positive de�nite matrices satisfying the LMI (13)
and the Nyquist constraint (15). Alternatively, Pdmin

is
also the unique solution to the following equations :

Pd = AT
d PdAd + (CT

d �AT
d PdBd) (19)

(Dd +DT
d �BT

d PdBd)
�1(CT

d �AT
d PdBd)

T

Pd = AT
1 PdA1 +AT

1 PdBd (20)

(R�BT
d PdBd)

�1BT
d PdA1 + CT

d R
�1Cd

where A1 = Ad �BdR
�1Cd; R = Dd +DT

d � 0

The proof of all the above results can be found in [11]. Since
Ad; Bd andDd are already �xed by the choice (14), Hmin(z)
is automatically obtained once the program returns Cd and
Pdmin

. We can include Pd in the objective function (4)
but minimizing Pd directly will produce a vector valued ob-
jective function. Instead, we will minimize a scalar valued
function of Pd with the help of the following observation.
Observation 1. Assume that Pdmin

is the minimum el-
ement in the convex set of symmetric positive de�nite ma-
trices satisfying the LMI and Nyquist constraints (13) and
(15). Then, Pd = Pdmin

if and only if Tr(WPd) is minimum
for every diagonal positive semi-de�nite matrix W.

5. THE OPTIMIZATION ALGORITHM

The optimization problem reduces to the following �nal
form:

max
Cd;Pd

Cd R
T � Tr(WPd) (21)

where RT = [r(N) : : : r(1)]T and W is a diagonal positive
semi de�nite weight matrix and �nd a real symmetric pos-
itive de�nite matrix such that�

Pd �AT
d PdAd CT

d �AT
d PdBd

Cd �BT
d PdAd Dd +DT

d �BT
d PdBd

�
� 0 (22)

Q CT
d = 0 (23)

and is therefore a maximization problem in the variable
vector Cd and a minimization problem in the matrix Pd.
Observation 2. The optimization problem described by
(21), (22) and (23) is a convex program in the variables Cd
and Pd.
The above formulation is therefore a convex multi-objective
optimization problem for which any local solution is also a
global one. The particular choice of the trace function was
intentional in order to use semi de�nite programming. Semi

de�nite programs can be solved very e�ciently both in the-
ory and practice [12]. Two di�erent programs are currently
available at our web cite: the �rst one is written by Van-
denberghe and Boyd [13] and uses a particular primal-dual
interior point method. The second one uses the MATLAB
LMI toolbox that implements the projective algorithm of
Nesterov and Nemirovskii For more details, the reader is
referred to http://www.systems.caltech.edu/tuqan.

6. ADDING REGULARITY CONSTRAINTS

The regularity property is important in wavelet applications
and consists of forcing r zeros at z = �1. The �rst of these
zeros (r = 0) is simply obtained from F (�1) = 0 (because
F (ej!) � 0 8 !, there will actually be a double zero at
�). The second zero r = 1 is obtained by di�erentiating
F (ej!) twice with respect to !, evaluating the result at �
and setting it to zero. Repeating this procedure, we can
easily derive the following set of equations:

Dd � Cd(Ad + I)�1Bd = 0; r = 0 (24)

Cd

2
666664

(2N + 1)2r

...
(2k + 1)2r

...
32r

3
777775
= 0; 1 � r < L (25)

The two running programs assume the so called Slater con-
ditions (existence of a strict feasible primal or dual) [12].
Unfortunately, adding the regularity constraint seem to vi-
olate those conditions indicating either an infeasible solu-
tion (which would be an interesting result) or more likely,
a non strict primal and/or dual solution. We expect fu-
ture versions of the programs to be able to relax the Slater
conditions.

7. SIMULATION RESULTS

Example 1: AR(1) process. Assume that the input x(n)

is a zero mean AR(1) process with Rxx(k) = �jkj where 0 <
� < 1. The optimum compaction gain curves for N = 2 and
3 as a function of � are shown in Fig. 2. The curve for N =
3 coincide with the theoretical compaction gain formula

Gcomp(2; 3) = 1 +
2�p
3 + �2

derived in [6]. The precise dif-

ference is actually in the order of 10�10. The last curve
denotes the compaction gain when N = 1 (ideal low pass

�lter case) and is equal to Gcomp(2;1) =
4

�
arctan

(1 + �)

(1� �)
.

From Fig. 2, it is therefore very clear that for an AR(1) pro-
cess, we do not loose much by using short �lters. Assume
now that � = 0:9, N = 3, M = 2 and set W = �I; � =
10�6. Although we do not have a formal proof that this par-
ticular choice ofW will work for all inputs, we never had to
change this setting over all the examples we have tried. The
positivity of Fopt(z) is demonstrated by the double roots
shown in the Z-plane plot of Fig. 3(a). The spectral factor-
ization is also quite accurate. The compaction gain remains



almost the same and the positivity of Hmin(z)Hmin(z
�1)

is preserved as we can see from Fig. 3(b).

Example 2: multiband AR(5) process. Assume that
the input x(n) is a zero mean multiband AR(5) process.
The magnitude squared responses of the resulting optimum
compaction �lters are shown in Fig. 4 for N = 7; 17 and
27. Let W = �I where � = 10�6. The corresponding com-
paction gains are 1:524, 1:563 and 1:575. It can be veri�ed
that the positivity of the resulting �lters is satis�ed for all
orders. Moreover, the accuracy of the spectral factorization
is as good as in the previous example.

As a �nal remark, we emphasize that the formulation
described in sections 3 and 5 works for any arbitrary value
ofM (not onlyM = 2) and can be used to generate globally
optimal FIR energy compaction �lters [11].
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Figure 2: Compaction gain curves for an AR(1) process for
N = 2; 3 and 1 with M = 2.
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Figure 3: Double roots on the unit circle indicating the
positivity of the product �lter F (z) (a) as the output of
the program (b) as a result of convolving hmin(n) with its
ipped version.
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Figure 4: The magnitude squared responses of the optimum
compaction �lters corresponding to the multiband AR(5)
process of order N = 7; 17 and 27 with M = 2.


