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ABSTRACT

An adaptive beamforming algorithm was developed for
broadband active sonar with a convergence time on the
order of the pulse duration and effective interference
nulling capabilities which enhance desirable echoes.  The
algorithm is an element based time domain implementation
in which beam data that is formed in the direction of each
interferer is successively subtracted from the element data
using an adaptive FIR filter.  The algorithm was applied to
impulsive source sonar data received on a bottomed
hydrophone array.  Collected data contained interfering
active returns and noise from nearby shipping as well as
desirable echoes from passive reflectors placed near the
array.   In a representative example, the algorithm adapted
fast enough to null out  active interference as well as
shipping noise, which enhanced the signal to noise ratio of
a passive reflector echo by 6 dB.

1. INTRODUCTION

Active sonar operates by transmitting a pulse of
energy that reflects off of targets and to the receiver, which
may or may not be in the same place as the transmitter.  In
the process, unwanted returns are also received in the form
of volume reverberation, and echoes from the bottom and
surface.  This is in addition to any nearby shipping noise
that may be present.  Conventional array beamforming
helps mitigate the noise problem by providing spatial
filtering gain against these noises.  Broadband arrays,
however, are typically sparce (unevenly spaced) because
they have to provide array gain over a wide bandwidth
with a limited number of elements due to the cost of
underwater hardware.  This results in high sidelobe levels
in the beampattern.  Adaptive beamforming is useful as a
way to improve on the system performance by placing
nulls in the sidelobes at directions where interference is
louder than the sidelobe level can eliminate.

When the interference is shipping noise or any
other slowly varying noise, standard adaptive beamforming
techniques can be used [4-8] to null out the interference.
For broadband adaptive beamforming, the data is typically

spectrally decomposed using a fourier transform (FFT) and
the adaption is applied independently to each frequency
bin.  This limits the adaption to the spatial domain whereas
the alternative, a two dimensional tapped delay line in the
time domain, can lead to a large number of degrees of
freedom.  Whether the technique is iterative [4] or a
sample matrix inverse type approach [5-8] a number of
frequency samples are required to estimate the statistics of
the noise field.  For the sample matrix inversion
approaches, the number of samples required before
convergence of the adaptive weights to within 3 dB of
optimal is approximately 2 times the number of degrees of
freedom [6].  Convergence for the iterative techniques is
dependent on the eigenvalue spread [6] but takes a number
of samples to converge as well.

For the active signal case, the received waveform
is either a pulsed modulated source or an impulsive source.
Modulated source waveforms can have a long pulse
duration, which would seem to suggest that the adaption
rate can be slower, but they should be matched filtered or
compressed in time before adaption so as to remove any
overlap in time of interferences.  This makes it easier for
the adaptive beamformer as it can handle the interferers
independently, assuming the adaption rate is fast enough.
Impulsive sources, which the algorithm in this paper was
designed to adapt against, are short in duration to begin
with.

Whether a modulated waveform is received and
compressed, or an impulsive signal is received, the signal
duration is generally much less than even 1 FFT so there is
no sample support for nulling out active interferers.  There
are techniques that mitigate the problem by reducing the
effective number of degrees of freedom: Beam based
adaption [8], dominant mode rejection [7], and other
eigenstructure based techniques.  One can also use samples
across frequency as opposed to across time, but this is
limited by fractional bandwidth considerations.  A signal
that has frequency extent is related by fractional bandwidth
to an interferer with angular extent.  the more one averages
in frequency, then, the more nulling the adaptive
beamformer has to do for each interferer in the data.  This
effectively reduces the number of interferers that can be
nulled out.
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Figure 1.   Block diagram of active adaptive beamformer

These techniques place a null in the direction of
active interferers, since the interferers statistical
information is present in the covariance matrix, but the null
is placed over the duration of the integration window and
not the duration of the active signal, which is much shorter.
For the times when the active signal is not present (even
within the same FFT sample), the resulting beampattern is
suboptimal and can degrade to the point where the
conventional beam response is better.

Anderson [1-3] developed a technique for
removal of coherent arrivals on an array that is a time
domain implementation, so there is no spectral
decomposition, and has the potential for fast convergence
since there is no covariance estimate needed for the nulling
of interferers.  His algorithm removed interferers by
forming a beam in the direction of the interferers and
subtracting the resulting beam time series, appropriately
aligned, from each of the element time series data
channels.  The direction of the beams was manually set and
the interferers being cancelled were passive interferers so
his integration time was not particularly fast.

The algorithm studied here is an application of
Anderson’s technique to active sonar with automation in

the bearing estimation and additional filtering in the
subtraction part of the algorithm.  Adaption rate is also
much faster because of the fact that active data is being
processed.  A block diagram of the algorithm is shown in
figure 1.  Interferers are removed in a two stage process
that is repeated for each interferer in the data segment
being processed.  In the first stage, strong interferers are
detected and the time delay of arrival of the interferer on
each element relative to a reference end element is
estimated.  In the second stage, the element time series
data is summed after compensating for the measured time
delays to form a "beam" in the direction of the interferer.
The beam data is then aligned with each of the elements by
delaying the beam data by the inverse of the time delay
measured earlier.  The beam data is then subtracted from
the element data.  To further compensate for mismatches
between the beam data and the element data, the beam data
is also filtered with an adaptive FIR filter that is designed
to minimize the output power after subtraction.

This process is repeated for each interferer in the
data.  The interference free element data is then
conventionally beamformed after filtering.  This results in
2 sets of beam data, the residual beam data formed from



the filtered element data and the reference beam data, both
of which are kept for detection and classification.

Adaption rate is determined by the amount of
time needed to estimate the bearing of interferers.  For
active returns, the most time one can use is the
(compressed) pulse duration plus the travel time across the
array as there is no information outside of this time
window.  For this application, the data was segmented into
50% overlapped blocks of duration equal to the travel time
across the array and the pulse duration.  For passive
interferences, the integration time could be longer but at
this time, there is no logic to distinguish between the two.

Section 2 will discuss the interference bearing
estimation stage of the adaptive cancellor.  Section 3
describes how the cancellation is implemented given the
estimated bearing of the interference.  Section 4 details
how the algorithm handles multiple interferences.  Section
5 describes the results of applying the algorithm to real
data, and section 6 is a summary of the results and some of
the outstanding issues associated with the algorithm.

2. INTERFERER BEARING
ESTIMATION

In order to place a null in the direction of the
interferer, a beam is formed in the direction of the
interferer.  This direction is unknown a priori and so has to
be estimated.  The technique chosen here is broadband
crosscorrelation of each element with a reference end
element.  This yields a response whose peak location gives
the estimated time delay between channels.  One could
alternatively choose to conventionally beamform the data
and then pick the beam having the peak response
(assuming they are close enough together) but this assumes
the hydrophone locations are known accurately, which is
not always the case, and that the signal is in the far field
and is a plane wave.  Since the interferer signal is strong,
the signal to noise ratio is high enough to do element based
processing and determine the actual time delays between
all of the channels for a particular data segment.  Element
level correlation processing doesn’t assume knowledge of
the hydrophone positions or that the signal arriving is a
plane wave.  The minimum measurement time for the
crosscorrelation estimate should be the signal duration plus
the travel time across the array so that all of the
hydrophones will have full signal data to correlate.

3. INTERFERENCE CANCELLATION

Once the interferer time delays across the
hydrophones have been determined (bearing estimation
step), the interference is removed.  The element time series

data is first aligned by delaying each element by its
measured interference delay relative to the reference
element.  The element time series data is then summed,
resulting in a beam formed in the direction of the
interferer.  This beam is then subtracted from each of the
element time series after applying an inverse time delay on
the beam data as was applied to the element data.

There are a number of real world effects that
reduce the effectiveness of the subtraction.  There are
variations in response of each of the elements as well as
decorrelation of the signal with distance from the reference
element.  The time delay estimation is not exact either as
there could be other interferers present that bias the
estimate.  One could also simplify the algorithm by shifting
the beam data to the nearest time delay when aligning it
with the element data just before subtraction.  In order to
compensate for these effects, an adaptive FIR filter is first
applied to the interference beam data to make it look as
similar to each of the element time series segments as
possible.  Filtered beam data is then subtracted from each
element time series.  For this study, 7 taps were used.

It should be noted that this algorithm is not
sensitive to correlations between signals as in other
traditional adaptive algorithms since the interferer is
estimated as beam time series and then subtracted from a
limited time delay window on the element time series data
so that there is no cancellation of the desired signal if it is
correlated with another return.

4. ITERATION PROCESS

There will be multiple strong interferers present
in the general case so the process described above needs to
be repeated.  If, after the initial interference cancellation,
there is still sizeable energy, the residual element time
series is input back into the bearing estimation stage and
the process is iterated on until there are no more strong
interferers left.  This is determined by setting a threshold
on the correlation output so that iterations stop if the
summed correlation doesn’t exceed a predetermined
threshold.  An advantage of the iterative process is that the
number of iterations is data dependent so that there are
only about as many iterations as interferers.  This is in
contrast to the traditional systems where the processing has
to be done on a predetermined  estimate of the number of
necessary degrees of freedom, which is usually constant
and conservative.

In the process of iterating on the interference
energy, it’s entirely possible that the return of interest will
be detected as a loud signal and subsequently removed
from the element time series.  In the event that this
happens, the target return will be contained in the reference



beam itself.  This can actually be advantageous as the
beam will be pointed directly at the target so there will be
no scalloping loss as there is normally in conventional
beamforming due to the fact that the target could be at an
angle between beams.  This underscores the necessity of
keeping the interference beams and passing them on to the
detection and classification stage.

Another scenario is that the bearing estimation
accuracy is such that total cancellation is not achieved.  In
this case, the iteration is useful in that multiple iterations
can be used to improve on the rejection of the interferer.  If
the accuracy is so bad that there is no appreachable
rejection and the same interferer gets detected each time
and the same bearing estimates get used each time, the
algorithm can get stuck in an infinite loop.  To account for
this, there has to be a failsafe that doesn’t use the same
bearing twice but perturbs it about the estimated one.  This
has the effect of broading the null and helps to effectively
remove the troublesome interference.

5. RESULTS

The algorithm mentioned above was applied to
impulsive sonar data received on a bottomed array.
Passive reflector targets were placed nearby the bottomed
array.  The active adaptive algorithm was applied to a
subset of the data containing a passive reflector echo, noise
from 3 nearby ships, and active echo interference that was
time coincident with the passive reflector echo.  The
receive array used had a broadband sidelobe response that
levelled out at 10 dB down from the peak so that
noticeable energy from the interferences leaked into the
passive reflector beam.  For the purposes of bearing
estimation, data was segmented into 50% overlapped
blocks of 1/2 second, which is the pulse duration plus the
travel time across the array.  After 4 iterations of the active
adaptive algorithm, the interferences were effectively
removed from the passive reflector beam so that the
passive reflector echo had a signal to noise ratio 6 dB
higher than with conventional beamforming.

6. SUMMARY

An algorithm for processing broadband active
sonar data has been presented.  The algorithm has
demonstrated its ability to null out active as well as passive
interferers.  Convergence time is approximately the pulse
duration plus the travel time across the array.  Further work
needs to be done to determine the number of iterations to
compute for a given data segment.  Additional
improvements in the bearing estimation can also be made

so that continuous interferers are tracked and their
resulting bearing estimates can be associated across
consecutive data segments.  This would lead to a higher
accuracy in forming the reference beam.
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