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ABSTRACT

A well-known source of target localization errors in over-
the-horizon radar is the uncertainty about downrange iono-
spheric conditions. Maximum likelihood (ML) coordinate
registration, using statistical modeling of ionospheric pa-
rameters, has recently been proposed as a method which
is robust to ionospheric variablity. This paper reports ML
performance results for real data from a known target using
estimates of ionospheric statistics derived from ionosonde
measurements. Bootstrap samples derived from these statis-
tics are then used in a hidden Markov model approximation
to the ground range likelihood function. Comparison of the
ML and conventional methods for over 250 radar dwells in-
dicates the new technique achieves better than a factor of
two improvement in ground range accuracy.

1. INTRODUCTION

Over-the-horizon (OTH) radars perform wide area surveil-
lance by exploiting the refractive and multipath nature of
high frequency (HF) propagation [1]. Target detection is
accomplished by tracking returns in slant range, Doppler,
azimuth and azimuth rate. Coordinate registration (CR)
is the process of localizing the target by converting these
slant coordinates to ground coordinates [2]. Target local-
ization is achieved by raytracing which uses an ionospheric
model estimated from a quasi-vertical ionogram (QVI) and
wide-sweep backscatter ionogram (WSBI) measurements.
Not surprisingly, errors in the estimated down-range iono-
spheric parameters can seriously degrade target localiza-
tion accuracy. In previous work, a maximum likelihood
(ML) CR method was developed with the aim of improv-
ing target localization accuracy by statistically modeling
uncertainties in the ionospheric propagation conditions [3].
For greater computational e�ciency, the likelihood function
was approximated by a hidden Markov model (HMM) for
the probability of a sequence of observed slant coordinates
given a hypothesized target location.

This paper reports the performance results of ML CR
for real data from a target at a known location using es-
timates of the HMM parameters derived from contempo-
raneous QVI and WSBI measurements. In particular, the
plasma frequency pro�le is treated as a homogenous ran-
dom process about the raypaths' ground range midpoint.
Spatial sampling of a 3-D ionospheric model, �tted to in-
situ QVI and WSBI soundings, is then used to generate
quasi 2-D pro�le realizations.

2. ML TARGET LOCALIZATION

A statistical model for radar slant data can be obtained by
mapping random plasma frequency parameters through a
HF raytracing model to determine the random slant coor-
dinates produced by a target at a particular ground posi-
tion. The objective of ML CR is to determine the ground
position given the observed slant coordinates and a model
for their underlying probability distribution. In addition to
improving robustness to ionospheric uncertainty, statistical
modeling also facilitates the use of less predictable obser-
vations, such as raymode amplitude rankings in the CR
process.

Ordering the observed slant coordinates in terms of the
signal-to-noise ratio (SNR) of each return, let xn denote
the observation from the nth strongest return. Associating
numbers with the di�erent raymode types, let s1 denote the
mode number corresponding to the strongest return, s2 the
mode number of the second strongest return, and so on,
until sN is the mode number of the weakest return. The
complete slant coordinate observation \sequence" is then
given by

xn = dsn(r) + " for n = 1; : : : ;N (1)

where dsn(r) is the group path length of raymode sn to
ground range r, and " represents the delay estimation er-
ror or \jitter" and is modeled by an independent zero-mean
Gaussian random variable. Note that Equation (1) depends
on both the sequence of raymode numbers, sn, and on the
mapping from ground range to slant range, dsn(r), given
the raymode number. Because both these quantities are
random due to ionospheric variability, this statistical model
is doubly stochastic. Given a speci�c set of ordered slant
coordinates, X = [x1; : : : ; xN ], the objective here is to de-
termine the most likely target ground coordinates. Let
px(Xjr) denote the probability density function of the or-
dered slant coordinate observations for a hypothesized tar-
get ground range, r. The ML estimate is obtained by sub-
stituting the observed slant coordinates X into px(Xjr) and
maximizing with respect to hypothesized ground range r.
In terms of the probability, P (Sjr), of a given sequence of
raymodes S = s1; : : : ; sN :

px(Xjr) =
X

pxjs(XjS; r)P (Sjr) (2)

where pxjs(XjS;r) is the probability density function of the
ordered slant coordinate observations given the raymode
sequence and the summation is over all possible raymode
sequences, which can in general be very large.



To reduce the computation associated with performing
the summation in Equation (2), a HMM is used here to
characterize X de�ned by Equation (1) [3]. In the termi-
nology of HMM's, the ordered slant coordinates de�ne the
observation sequence and their associated unobservable ray-
modes de�ne the hidden state sequence. The use of a HMM
to compute the likelihood surface requires two approxima-
tions. First, given that the mode sequence is known a pri-
ori, the slant returns of di�erent raymodes are assumed to
be statistically independent based on the fact that the ray-
modes traverse di�erent parts of the ionosphere exhibiting
largely independent variations. Second, the raymode se-
quence is described by a �rst-order nonstationary Markov
model which implies that given the nth strongest raymode
type, sn�1 and sn+1 are statistically independent. While
clearly an approximation for n > 2, results presented below
suggest that this adequately models the structure of S. In
terms of the output probabilities, pxn jsn (xnjsn; r), and the
transition probabilities, P (snjsn�1; r), the likelihood func-
tion can then be written as

px(Xjr) �=
X 

NY
n=1

pxn jsn (xnjsn; r)P (snjsn�1; r)

!
(3)

where now the summation over all possible state sequences
can be performed recursively by computing the set of for-
ward variables,

�n(sn;k) =

KX
k=1

�n�1(sn�1;k)P (sn;k jsn�1;k)p(xnjsn;k) (4)

where sn;k denotes the kth value of sn and all quantities
are conditioned on r. At the Nth iteration of Equation (4),
the likelihood function is found by taking

px(Xjr) =

KX
k=1

�N(sN;k) (5)

The maximum likelihood estimate (MLE) of target location
is found by maximizing Equation (5) over a discrete grid of
hypothesized ground ranges.

3. ESTIMATION OF HMM PARAMETERS

Estimating the parameters of a probabilistic model invari-
ably requires a \training set" of measurements derived from
data statistically similar to the observations of interest. In
the current application, this means obtaining measurements
of the ionosphere which encompass the variability exhib-
ited in the region roughly half-way between the radar and
the target [4]. The instruments typically available to ob-
tain this data are the quasi-vertical ionosonde (QVI) and
wide-sweep backscatter ionosonde (WSBI). The QVI is a
measurement of group delay versus frequency for HF sky-
wave propagation between a transmitter and receiver less
than about 150 km apart. QVI's can be inverted to es-
timate the plasma frequency pro�le near the radar. To
simplify raytracing, this pro�le is often represented by an-
alytic layers (e.g. Chapman) which are parameterized by
their heights, critical frequencies, and thicknesses. To de-
termine the downrange ionospheric layer parameters, the

overhead pro�le parameters estimated from the QVI can be
used as starting points for �tting the WSBI leading edge.
The WSBI measures the ground backscatter intensity as a
function of time delay and frequency. The WSBI leading
edge is an estimate of the minimum group delay of a return
from the ground as a function of frequency [2]. Precise �t-
ting of a set of WSBI leading edges at di�erent azimuths
requires raytracing through a 3-D ionospheric model. How-
ever, due to the limited nature of the ionospheric data, es-
timates of the 3-D spatially-varying ionospheric parameters
are not unique. Thus in addition to ionosonde data, esti-
mation of the down-range ionospheric model relies heavily
on the use of empirical ionospheric models [5, 6].

Several approaches could be taken to model the uncer-
tainty in the down-range ionosphere estimated from QVI
and WSBI measurements. First, computational models for
the second-order statistics of ionospheric uctuations due
to trans-ionospheric disturbances could used to represent
the variability about the estimated pro�le. Alternatively,
a database of historical ionospheric measurements could be
used to derive empirical models of variability which would
extend the �rst-order description given by empirical mod-
els. Di�erent realizations of the ionosphere could then be
obtained by �tting the ionosonde measurements to di�erent
realizations of the historical data. The di�culty with these
approaches, however, is that they rely on either computa-
tional or empirical models of ionospheric variability which
have not yet been available. In light of this, the approach
taken here is to treat the plasma plasma frequency pro�le
as a spatially homogeneous random process in latitude and
longitude around the midpoint between the radar and the
dwell illumination region (DIR). Samples of the 3-D iono-
spheric estimate in azimuth and ground range can then be
treated as di�erent 1-D realizations of the midpoint pro�le.

Let F denote the distribution of the down-range pro-
�le parameter samples g(ri) taken at ground locations ri
for i = 1; : : : ; L. In previous work, F was assumed known,
but in practice F must be estimated from the QVI and
WSBI measurements. Smoothed bootstrap resampling is

a means of generating realizations of bF without the need
to explicitly estimate a complicated joint distribution func-

tion [7, 4]. Once a large set of random realizations from bF
are available, the parameters of the HMM for each hypoth-
esized target location can be determined by Monte Carlo
evaluation of the raytrace propagation model. In partic-
ular, the raymodes types take on discrete values and their
corresponding probabilities must be represented by discrete
distributions. For example, an estimate of the transition
probability, P (snjsn�1; r) can be computed by using the
proportion of realizations such that mode sn is the nth
strongest mode given that sn�1 is the (n � 1)th strongest
mode.

The slant coordinate observations, however, have con-
tinuous values and so the HMM output probabilities must
be represented by continuous proability density functions.
The output probability density, pxjs(xnjsn; r), can be es-
timated given random realizations from F using either a
parametric or a nonparametric method [4]. For example, a
parametric approximation to pxjs(xnjsn; r) is the Gaussian

PDF with sample mean b�sn(r) = 1=N
PN

i=1
dsn(r; i) and



variance

b�2sn(r) = 1

N

NX
i=1

[dsn(r; i)� b�sn(r)]2 + �2" ; (6)

where dsn(r; i) is the slant range for a target at ground
range r using the ith ionospheric realization. Note that
in Equation (6), the �rst term depends on the ionospheric
variability and the second term contains the slant range
jitter variance, �2" , determined by radar parameters such as
SNR and bandwidth.

4. LOCALIZATION PERFORMANCE RESULTS

The random ionospheric model in the both simulation re-
sults and real data results was based on QVI and WSBI
measurements, taken December 7 and 8, 1994. First, over-
head and down-range ionospheric parameters of a 3-D iono-
spheric model were determined using software routines de-
veloped by Nickisch and Hausman [5]. The 3-D model pro-
�le parameters were sampled at eight ranges along the eight
bearings to generate 64 ionospheric samples over roughly an
800x800 km down-range sample region. To reduce the com-
putational burden of Monte Carlo evaluation of the raytrac-
ing model, an analytic multi-quasi-parabolic (MQP) ray-
tracing model was employed. Detailed descriptions of the
MQP model for a strati�ed ionosphere are given in [8] and
for a quasi 2-D tilted ionosphere in [9]. For the results
here, the MQP layer heights and critical frequencies were
taken equal to the 3-D model's parameters, and the semi-
thickness parameters were computed from the layer heights
to approximate the vertical pro�les of the 3-D model. After
obtaining samples from the 3-D model, the quasi 2-D MQP
zenith tilt angle parameters were computed for each sample
by a least-squares �t of the MQP synthetic leading edges
to the corresponding WSBI leading edges. Comparisons of
CR curves suggest that the random realizations of the quasi
2-D MQP statistical model closely approximate the results
of numerical raytracing through the 3-D ionospheric model.

200 ionospheric realizations, generated from the down-
range samples via smoothed bootstrap resampling, were
used in Monte Carlo evaluation of the MQP raytracing
model to compute the slant ranges and associated raymode
amplitudes for the bistatic extraordinary raymodes. The
random propagation model was run at 22 MHz for a sce-
nario with a minimal number of possible paths between the
radar and target and also was run at 12 MHz for a case
with a large number of raypaths. HMM parameters for
the 12 strongest raymodes were retained for ground ranges
between 2000 and 2500 km in 1 km intervals. The a pri-
ori statistical information contained in the raymode am-
plitudes can be appreciated by considering the probability
that a particular raymode corresponds to the strongest re-
turn. The probabilities for the raymode types, are plotted
as a function of ground range in Figure 1. Note that at
22 MHz the probabilities have little variation in ground
range. In contrast, the probabilities for 12 MHz indicate
that more raymodes are probable for the strongest observa-
tion. The changes in these probabilities correspond to the
ground ranges over which the F1 layer caustic exists in the
transmit or receive paths.

A conventional CR method used for comparing local-
ization accuracy was de�ned by the average of the ground
ranges corresponding to raymodes identi�ed as having the
minimum ground range variance. This method is referred
to here as the minimum variance (MV) CR method. The
ionospheric model assumed by the conventional model was
that obtained using the mean MQP parameters from the
ionosonde data. For 50 Monte Carlo trials, ground range
estimation was performed for a target at each ground range
in 10 km intervals between 2000 and 2500 km using a max-
imum of 3 observations. A zero-mean Gaussian slant range
jitter component, with �" = 3:0 km, was added to model
delay estimation error. A comparison of the MLE per-
formance to the conventional MVE method is the varia-
tion in average absolute miss distance versus ground range,
shown in Figure 2. Observe that the average miss distance
achieved by the ML method is consistently less than that
of the MV method. The performance improvement of the
ML method over the MV method varies with true ground
range but can be as much as 5 times more accurate.

To determine the achievable ML CR accuracy on real
data, the method was tested on radar returns from a bea-
con at a ground range of 2192 km. The likelihood function,
given in Equation (5) using the calculation of the forward
variables in Equation (4) on a grid of hypothesized ground
ranges, is shown in Figure 3 for 5 beacon dwells. Note that
each likelihood function realization has multiple peaks in-
dicating that there were several ambiguities in the ground
range estimates. The ambiguities arise from the raymode
uncertainty and the secondary peaks in the likelihood func-
tion correspond to less probable raymodes for a single re-
turn. To compare the ML method with conventional meth-
ods, histograms of the range errors, shown in Figure 4, were
computed for each method using over 250 dwells recorded
during 14 di�erent tracking periods. The miss distances are
reported in normalized units. The top two histograms cor-
respond to the conventional methods of the existing radar
system and the 3-D model respectively. The average ab-
solute miss distances (AVMD) and average ground range
biases for the three methods are shown at the left sides of
the histograms. The ratios of the average absolute miss dis-
tances indicate that the ML method o�ers nearly a 2 to 1
improvement over the deterministic 3-D model and nearly
a 3 to 1 improvement over the CR method in the existing
radar system.

5. CONCLUSIONS

A ML CR method is designed to obtain the most accu-
rate target localization performance for a given level of un-
certainty about the down-range ionospheric pro�le, mod-
eled here as a homogeneous random process. A HMM,
with parameters estimated from down-range samples de-
rived from ionosonde data, incorporates previously ignored
relative raymode amplitude information. Beacon data re-
sults indicate that the ML method can provide nearly a 2
to 1 improvement over conventional methods.
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Figure 2: Average Absolute Miss Distance vs. Ground
Range at 22 MHz and 12 MHz
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Figure 3: Likelihood Functions for 5 Beacon Dwells
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Figure 4: Beacon Ground Range Error Histograms for Dec
7-8, 1994 with over 270 dwells


