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ABSTRACT

We describe a generalized scale-redundant wavelet transform
which approximates a dense sampling of the continuous wavelet
transform (CWT) in both time and scale. The dyadic scaling re-
quirement of the usual wavelet transform is relaxed in favor of
an approximate scaling relationship which in the case of a Gaus-
sian scaling function is known to be asymptotically exact and ir-
rational. This scheme yields an arbitrarily dense sampling of the
scale axis in the limit. Similar behavior is observed for other scal-
ing functions with no explicit analytic form. We investigate char-
acteristics of the family of Lagrange interpolating filters (related to
the Daubechies family of compactly-supported orthonormal wave-
lets), and finally present applications of the transform to denoising
and edge detection.

1. INTRODUCTION

The continuous wavelet transform (CWT) is useful for many appli-
cations in signal analysis. Computer evaluation of the CWT, how-
ever, requires an efficient discretization of the transform, which
has been the subject of much research. Most existing fast approxi-
mation techniques involve the use of a dyadic scaling relationship
([1, 2], and others), and/or require that the scaling functions and
wavelets used have a closed-form expression [1, 2, 3]. We present
a novel approach with an approximate scaling relationship and
O(N) complexity per scale (O(N2) overall), which expands the
class of scaling functions and wavelets available for CWT-based
analysis.

First, we define the CWT of a funcionf(t) as
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wherea andb are continuous scaling and translation parameters,
respectively, and (t) is the real-valued mother wavelet. Awavelet
series(WS) is simply a sampling of the CWT defined such that
WS (j; k) = W f(2

j; k2j) for j; k 2 Z, where admissible
wavelets are restricted to those satisfying a dyadic scaling re-
lationship

 (t) =
X
k

g(k)
p
2�(2t� k); (2)

whereg(k) are thewavelet filtercoefficients and� is a scaling
functionwhich serves to allow accurate expansion of a signal at a
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finite number of scales, and to dilate the wavelet at dyadic scales.
It must satisfy

�(t) =
X
k

h(k)
p
2�(2t� k); (3)

whereh(k) are thescaling filtercoefficients.
Mallat [4] derived a discrete orthogonal filter bank implemen-

tation of the wavelet series, which we will refer to here as the dis-
crete wavelete transform (DWT). The DWT approximates a sam-
pling of the WS (and hence the CWT), and is exact for certain
classes of input signals and signal discretization methods [5]. The
DWT can be interpreted as an expansion in terms of discrete ba-
sis sequences which approximate continuous basis functions [6].
The basis sequences correspond to the overall impulse response at
the output of each stage of the DWT filter bank. The DWT is not
invariant to time shifts of the input signal; theredundantwavelet
transform (RDWT), also known as theà trousalgorithm [7, 5] is a
shift-invariant extension to the DWT which provides integer sam-
pling of the time axis at dyadic scales.

In this paper, we propose a generalization of the RDWT which
approximates (but does not sample) a CWT. It is shift-invariant
and allows for various scale sampling densities, all of which will
be more dense than the dyadic scales of the DWT or RDWT. The
formulation differs from classical multiresolution analysis (MRA)
[8], in that it does not require a specific scaling relation between
vector spaces (or stages of a DWT), but still utilizes the idea of
nested scaling spaces. A multitude of perfect reconstruction imple-
mentations are possible using only finite impulse response (FIR)
filters. Applications to denoising and edge detection will be ex-
amined, with results at least comparable to existing wavelet-based
methods.

2. SCALE

For a continuous analytic function, the concept of scale is clear;
every point in the rescaled function is defined by the relation

fa;b(x) =
1p
a
f
�
x� b

a

�
; (4)

wherea andb are the continuous scaling and shift parameters, and
the factor of1=

p
a preserves the norm off .

There is some ambiguity, however, when considering discrete
signals or sampled continuous signals. Only a finite number of
samples are available to represent all scalings of the signal. The
finest scale available is set by the sampling rate; to achieve a finer



scale, one must know or assume an underlying continuous function
and resample at a higher rate. Likewise, to move to coarser scales
requires some decision about how to combine information from
several pixels. In practice, scale is generally defined by the char-
acteristics of the smoothing, orscalingfunction used to produce a
coarser scale. This is usually a well-defined continuous function,
or in the case of wavelets, a function that can be defined by its self-
similarity over a dyadic grid of scales. Then, instead of rescaling
the signal for each level of analysis, one can simply rescale the
analyzing function; the effect is the same as if a single analyzing
function had been applied to different scales of the signal.

In what follows, we will not achieve an exact scale relationship
between basis functions, as in the dyadic wavelet case. Instead, we
will consider discrete basis sequences which converge to a contin-
uous function as the scale becomes infinitely large. Implemented
in a filter bank, the ouput of each low-pass stage can be considered
to be an appoximately scaled version of that continuous function,
with the approximation becoming more accurate as the number of
iterations increases.

3. A SCALE-REDUNDANT TRANSFORM

The scale-redundant discrete wavelet transform (SRDWT) is a
completely undecimated filter bank implementation which results
in a very fine (approximate) scale sampling. It is not to be con-
fused with the RDWT, which is often referred to as an undeci-
mated wavelet transform. Since the RDWT is a dyadic transform,
it must include either downsampling or upsampling in its imple-
mentation. Shensa [5] describes two equivalent implementations
of the RDWT; one involves averaging decimated DWTs and the
other (theà trous algorithm) upsamples the filters at each stage of
the filter bank. Figure 1 shows the general form for the SRDWT,
which is simply a cascaded filter bank with (potentially) different
scaling filters at each stage.
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Figure 1: General filter bank for the SRDWT.

The simplest implementation of the SRDWT in Figure 1 for a
given scaling filterh would requireh2n+1 = h andh2n = h(�n)
for n = 0; 1; 2 : : : where the time-reversed version ofh yields
symmetric impulse responses at the output of each even stage. In
practice, however, a logarithmic sampling of scales is often de-
sirable and more computationally feasible. In this paper, we will
investigate a scheme which requires

h1 = h; h2 = h(�n); and hn = h(2
n�2) (5)

for n = 3; 4; 5 : : : whereh(n) denotes the filter with a Fourier
transform ofjH(!)jn. The second stage is time-reversed to pro-
duce a symmetric basis sequence, and each remaining filter is sim-
ply chosen to match the overall impulse response of the system at

the output of the previous stage. Thus, the basis sequence at each
scale is the convolutional square of the previous scale’s sequence.

We will now analyze the characteristics of the SRDWT when
h andg are chosen to be members of the Daubechies family of
compactly-supported orthonormal wavelets [9]. We will use the
notationD2n for each wavelet system, where2n is the wave-
let/scaling function filter length (D2 is the well-known Haar sys-
tem). Related to the Daubechies family, and perhaps more fun-
damental, are the family of Lagrange `a trous interpolating filters,
which are the convolutional square of the Daubechies filters [5].
The term “à trous” implies that the filter satisfiesf2n = �(n)
within a constant. This property allows the filter to interpolate
an upsampled sequence without disturbing the original values of
the sequence. It can be shown that a DWT which uses an `a trous
scaling filter exactly samples the CWT [5], a useful property for
our purposes. The scaling functions associated with the Lagrange
filters in a DWT are known as the Deslauriers and Dubuc limiting
functions [10] and, like the Daubechies functions, have no explicit
analytic form.

Figure 2 shows the limiting shapes of the discrete basis se-
quences in our scheme. The Haar (D2) case converges to a Gaus-
sian function, a result which is fairly well-known and will be ex-
amined in the next section. TheD4 throughD8 cases converge
to functions which are remarkably close to scaled versions of the
Deslauriers and Dubuc limiting functions, one of which is shown
as the dashed curve overlaying theD4 SRDWT scaling function.
This suggests that the basis sequences in our scheme are converg-
ing rapidly to an accurate scale relationship. The Deslauriers and
Dubuc limiting functions are produced by exact dyadic scalings of
the original Lagrange filter, since it interpolates itself perfectly at
each stage of a DWT filter bank.

D4 and Deslauriers/DubucD2 (Gaussian)

D6 D8

Figure 2: Scaling functions approximated by the SRDWT.D4 is
compared to the Deslauriers and Dubuc limiting function.

3.1. Scaling Behavior

The Daubechies filters exhibit an interesting scaling behavior
when applied to the SRDWT with the method in (5). Figure 3



shows the RDWT scaling filter frequency responses on the left
for D2, D4, and D6 at the outputs of the first three filter bank
stages. The same filters applied to the SRDWT for several stages
are shown on the right. The bold responses roughly match the
three stages of the RDWT in cutoff frequency. TheD2 SRDWT
appears to contain two stages for every RDWT stage, theD4 four
stages, and so on. This scaling behavior was also observed on the
time axis, suggesting that the scaling relation satisfied in the limit
is of the form

�j+1;k(t) =
X
k

hj(k)2
�j=2L�j;k(2

�j=Lt� k); (6)

whereL is the even length of the corresponding Daubechies filter.
The amplitude scaling behavior does not converge as rapidly as the
time axis scaling, so the SRDWT must be re-normalized at each
stage. The effect on computational complexity is not significant
since both the filter coefficients and normalization constants can
be pre-calculated and stored.
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Figure 3: Frequency responses of first three stages of RDWT and
corresponding SRDWT stages.

3.2. Inversion

The RDWT (and SRDWT) allow great freedom in the design of
analysis and synthesis filters, which is often not fully exploited.
For a given set of analysis filters, there is an infinite number of
possible synthesis filters, which can be designed to optimize some
criterion such as regularity or smoothness.

For simplicity, we have constrained the synthesis scaling filters
to be identical to their analysis counterparts. The synthesis wavelet

filters are then given by solving the frequency-domain equation

H(!) ~H(!) +G(!) ~G(!) = 1; (7)

where ~H and ~G are the frequency responses of the synthesis scal-
ing and wavelet filters.

The resulting filters are all FIR, but get very long after several
stages. Due to the small scaling factors, however, the significant
portion of the filter grows quite slowly so they can be truncated
with very little error.

3.3. An Edge Detection Application

First we will consider theD2 case which, according to Bernoulli’s
theorem, converges to a Gaussian envelope given by

�(t) =
1p

2�
p
N=2

e
�

1

2

�
t�N=2p
N=2

�
2

(8)

for a lengthN + 1 scaling sequence, assuming a unity sampling
rate. The intermediate basis sequencesare coefficients of B-splines
of increasing order [11].

The Gaussian kernel has been proven to be optimal for some
applications in the fields of scale-space theory and edge detection
[12, 13]. Berkner has implemented a fast scale-redundant trans-
form [14] for edge detection which useshn = D2 for all stages.
We have adopted the same name for our generalized application.

Using our logarithmic scale sampling scheme of (5) and the
Gaussian function (8), we observe that the scale parametera in the
CWT is equivalent to the factor

p
N=2 in (8). In our scheme,N is

doubled at every stage, so the scaling factor (asymptotically) given
by (6) is

p
2, instead of the usual factor of two.

3.4. A Denoising Example

In this example, we show promising results from the use of the
SRDWT in Donoho’s denoising scheme [15]. Earlier work has
shown a significant improvement in denoising performance by us-
ing the RDWT instead of the DWT [16]. This improvement sug-
gested that a more redundant transform might yield further im-
provements.

We compared the performance of the D4 SRDWT using a
hard-thresholding scheme with D4, D6, and D8 RDWTs also using
hard-thresholding. Figure 4 shows a realization where the SRDWT
compares favorably with the best (in mean squared error) RDWT
result.1 Figure 5 shows mean squared and maximum errors aver-
aged over 40 realizations with about 10 dB signal to noise ratio
(SNR). The thresholds were the only parameter optimized here;
the intent is only to illustrate the potential of the SRDWT for de-
noising applications.

4. CONCLUSION

Many of the constraints associated with the DWT are required to
ensure an orthogonal basis for signal analysis. We have shown here
that the dyadic scaling relationship, while convenient for exact
scaling of discrete signals, can also be approximated effectively.
The framework of the SRDWT allows great flexibility in designing

1Test signal was generated by Donoho’s MATLAB routineMake-
Signal from his software packageWaveLab.
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Figure 4: Denoising comparison for “Doppler” signal with opti-
mal thresholds determined experimentally. RDWT uses a full de-
composition with hard-thresholding; SRDWT uses 16 stages with
hard-thresholding.
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Figure 5: Comparison of RMSE and maximum error for 10 dB
Doppler signal, averaged over 40 realizations.

approximate wavelet algorithms. For the case of the Lagrange in-
terpolating filters, we have extended the scaling relationship from
2j to 2j=L without utilizing the dyadic scaling equation.
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