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ABSTRACT
The propagation of sound waves is described by partial dif-
ferential equations for the acoustic pressure and the acou-
stic fluid velocity. The solution depends on the shape of the
enclosure and on the boundary conditions. Among various
methods for the discretization of partial differential equa-
tions, the multidimensional wave digital filter approach is
known to yield robust algorithms for the discrete simulation
of continuous problems.

This paper describes the derivation of a discrete model
for three-dimensional sound propagationaccording to mul-
tidimensional wave digital filtering principles. The correct
treatment of boundary conditions for various wall impedan-
ces is shown. A numerical example for the sound propaga-
tion in three interconnected rooms of a building demonstra-
tes the capabilities of the method.

1. INTRODUCTION

In many applications of spatial sound processing, like acou-
stic echo cancellation, active noise control, or array proces-
sing, tremendous advances have been made without expli-
cit knowledge of the sound field. This has been mostly ac-
complished by intelligent use of adaptive filters. However,
further progress may require evaluation of the dynamics of
spatial sound fields, especially for applications within en-
closures. Some suitable methods are briefly reviewed here.

Methods for the simulation of sound propagation in en-
closures can be divided into geometric and computational
acoustics. They differ in the propagation model for the
sound waves. Geometric acoustics simplifies the propaga-
tion process by a plane wave assumption. Reflections are
modelled by acoustic rays, which are reflected at boundaries
according to the laws of geometry. Examples for geometri-
cal acoustics are the mirror image method, ray tracing, and
the radiosity method. The latter two methods are adapted
from graphical rendering to the special problems of acou-
stics, e.g. by considering the finite propagation speed of
sound. The methods from geometric acoustics are computa-
tionally tractable, but at the cost of simplifying assumptions.

They are the state of the art for the numerical determination
of room impulse reponses in enclosures like buildings or
cars.

Computational acoustics, on the other hand, rely on first
principles of physics, like the laws of kinetics or conserva-
tion of mass. Discrete simulation algorithms are obtained
by proper discretization of the underlying partial differen-
tial equations. They are capable of exact physical model-
ling, provided the spatial and temporal step sizes are chosen
small enough. However, the associated computational load
far exceeds todays desktop capabilites and constitutes a ma-
jor drawback. In computational acoustics, to date, mainly
wave guide methods have been presented for the dynamic
simulation of room acoustics [8, 9, 10]. But also multi-
dimensional wave digital filters (MD-WDF) are known to
yield robust algorithms for the discrete simulation of conti-
nuous MD problems [4].

This contribution presents the application of MD-WDF
principles to the simulation of 3D sound propagation. It
is an extension of the general approach described in [5] to
three dimensions. In addition, special attention is paid to the
proper treatment of boundary conditions for various cases
that are important in practice.

The presentation starts with a definition of the physi-
cal problem in terms of partial differential equations (PDE).
The next step is the network description of the MD pro-
blem, followed by the discretization procedure which gives
the MD-WDF algorithm in form of a state description with
proper treatment of the boundary conditions. Finally, the
capability of the method is demonstrated by an example.

2. PROBLEM DEFINITION

The propagation of sound waves in air is governed by two
basic relations (see [11]) for the acoustic pressurep(x; t)
and the acoustic fluid velocity vectorv(x; t). Pressurep and
velocity v denote small-amplitude acoustic signals, which
depend on timet and the space vectorx. These basic rela-
tions are the equation of motion and the equation of conti-



nuity. Under reasonable simplifications, they are given by
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where�0 is the static density of the air andc is the speed
of sound. Frequently, both equations are combined into
the wave equation by elimination of either pressurep or
velocity v [11]. However, the application of wave digital
filtering principles requires starting from the basic equa-
tions (1,2). We rewrite them in terms of the scalar com-
ponentsx, y, z of x in cartesian coordinates
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where (3) stands for any of the three equations with� =
x; y; z, respectively and
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The representation of these equations by a discrete MD-
WDF algorithm is shown in the next sections. The pre-
sentation is rather concise, since it follows the space-time-
domain analysis approach outlined in [5].

3. NETWORK DESCRIPTION

The first step is a network description of (3,4). By repre-
senting these equations in graphical form, we can express
mathematical manipulations as network operations familiar
from circuit theory. Note however, that the network impe-
dances are not idealizations of real world components, rat-
her they constitute a graphical description of the differential
operators of the PDEs (3,4).

The network description is obtained by four basic steps:

1. Since�0 and c are constant with respect to time and
space, we express pressure and velocity in exponential
form as

v�(x; t) = V�e
s
T
t; p(x; t) = Pes

T
t; (6)

with the complex wave numberssx; sy; sz and the com-
plex frequencyst (T denotes transposition)

s
T = [sx; sy; sz; st]; t

T = [x; y; z; t]: (7)

and obtain
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2. We express the complex pressure amplitudeP as velo-
city amplitudeP=r0 with an arbitrary real impedancer0.
The choice ofr0 determines the properties of the resul-
ting algorithm and is limited only by stability considera-
tions [5]. The most simple arrangement is obtained for
r2
0
= 3�2

0
c2, resulting in
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3. In order to express each of the four equations (10,11) as a
mesh equation of a network, we introduce the additional
terms�r0s�V� and�r0s�(P=r0). The resulting set of
equations
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is equivalent to the network description of Fig. 1 with the
“mesh currents”Vx, Vy, Vz, andP=r0.

Vx

P
r0

P
r0

Vy

Vz

P
r0

0st-r0sx

r0sx

r0sy

r0sz

0st-r0sx

0st-r0sy 0st-r0sy

0st-r0sz 0st-r0sz

Figure 1: Network description: T-Circuits

4. The final form of the network description of the con-
tinuous system results, when the T-circuits in Fig. 1 are
replaced by the corresponding lattice structures as shown
in Fig. 2. The important property of this structure is that
the impedances

Z� = �0st � r0s� ; Z 0

� = �0st + r0s� (14)
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Figure 2: Network description: Lattice Structure

which characterize the lattices for each spatial dimen-
sion, contain both space and time derivatives. This will
guarantee an explicit algorithm after discretization.

4. DISCRETIZATION

Once a suitable network description of the PDEs (3,4) has
been obtained, a discrete algorithm follows by standard wave
digital filtering principles [3, 5]. The two basic steps are

1. Introduction of wave quantities (pressure waves) by

Ai = P +R0V� ; Bi = P � R0V� (15)

for i = 1 : : :6 at each port of the three lattices in Fig. 2
with the port resistanceR0 .

2. Integration of the resulting differential operators with
the so calledgeneralized trapezoidal rule[5]. For the
special choice ofr0 in the last section, this means that
the integration path in the space-time-domain follows
the direction of wave propagation. With the choice of
the time step sizeT (t = kT; k 2 IN), the spatial
step sizeh� = h is identical in all three dimensions
([x; y; z] = [lh;mh; nh]; l;m; n 2 IN) and is linked
to the time step size byh =

p
3cT . The port resistances

R0 are determined by the continuous impedancesZ� and
Z0

� and by the step sizesT andh

R0 = 2
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T

= 2
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: (16)

Fig. 3 shows the resulting MD-WDF structure. Note,
that spatial shifts byh occur only in connection with a de-
lay byT . This follows from the lattice structure of the con-
tinuous network in Fig 2 and guarantees the explicit nature

of the algorithm, as noted earlier. The adaptor at the right
hand side is a three port adaptor as given in [3]. The wave
quantitiesai andbi, i = 1 : : :6 are discrete versions of the
wave amplitudesAi andBi in (14).

The MD-WDF structure from Fig. 3 is implemented by
setting up a state description in terms of the statesxi, i =
1 : : :6 at the outputs of the combined shift and delay ele-
ments. In each time stepk, the new statesxi(l;m; n; k+1)
are computed from shifted versions of the current states
xi(l;m; n; k). Since the statesxi are given in terms of wave
quantitiesai andbi, they have to be converted back to pres-
sure and velocity components. By inversion of (15) at the
portsa2=b2 anda1=b1 follows (indices(l;m; n; k) are omit-
ted)

p =
r0
2R0

(a2 � b2); vx =
1

R0

a1 (17)

and similarly forvy andvz. Finally, p andv� are stated in
terms of the state variables by expressing the wave quanti-
tiesai, bi by the statesxi, using the structure from Fig. 3
and the adaptor equations.
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Figure 3: Multidimensional wave digital filter for the simu-
lation of three-dimensional sound propagation



5. BOUNDARY CONDITIONS

Hard and reflection-free boundary conditions for two spa-
tial dimensions have been treated in [5], while the extension
to more general boundary conditions for one spatial dimen-
sion is shown in [1, 2, 6, 7]. We will briefly discuss the 1D
approach and show its extension to higher dimensions.

Consider the calculation of the state variablex1 at the
boundary. Its determination from Fig. 3 would require the
knowledge of values located beyond the boundary byh. In-
stead we use the description of the reflection properties of
the boundary as given in terms of the wall impedanceZ by
p = Zvx. Expressing at firstp andvx by (17) and then the
wave quantitiesa1, a2 andb2 by the statesxi gives a rela-
tion between all six state variables at the boundary. It serves
to determine the value ofx1 which is in accordance with the
boundary conditions. The cases of hard and soft reflection
or absorbtion are included for special values ofZ.

In two or three dimensions, the wall impedance may de-
pend on the angle of incidence. In this case, the determi-
nation of states at a boundary involves also neighbouring
points. Frequency dependent wall impedances can be mo-
delled in the same way, when the unkown state is calculated
from previous states in a time recursive fashion.

6. NUMERICAL RESULTS

The algorithm described above has been used to simulate
the propagation of a sound wave in a building with three
interconnected rooms (compare [8]). The resulting pressure
field for a fixed point in time in a plane parallel to the floor
is displayed in Fig 4. The outer walls (not shown) and the
inner walls are highly reflecting, whereas floor and ceiling
(not shown) are absorbing. A sound pulse emanates from
the corner in front and propagates through all three rooms.
Note the diffraction effects at the openings.
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Figure 4: Sound propagation in a three-room building

7. CONCLUSIONS

It has been demonstrated, that multidimensional wave di-
gital filters are a suitable tool for the simulation of room
acoustics. The simulation algorithm including the boundary
conditions are derived from first principles of physics. This
allows the correct adaptation to boundary value conditions
stated in terms of the wall impedances of the enclosure. The
derivation shown here considered only the most simple case
for the construction of the algorithm. More degrees of free-
dom in the choice of spatial and temporal step sizes can be
gained by a more general layout of the network description.
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