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ABSTRACT the third question holds the key to answering the first two

In this paper we present a novel model for purely discrete_questions. A key result of this paper is the demonstration
of the fact that it is possible to define scaling or dilation in

time self-similar processes and scale-invariant systems. The X i . . .
results developed are based on a new interpretation of theSl.JCh away that is continuous even though the S'gf‘a' ltselfis
discrete-time scaling (equivalently dilation or contraction) d]screte-tlme. ngegfter, we will use the't.erm scalmg exclu-
operation which is defined through a mapping between dis_swely to mean dilation. Using this definition of scaling, we
crete and continuous time. It is shown that it is possible develop definitions and constructions of deterministic and
to have continuous scaling factors through this operation ;tochastic,.disc.rete—time, self-similar signals and discrete-
even though the signal itself is discrete-time. We study both time scale-invariant systems.

deterministic and stochastic discrete-time self-similar sig-

nals. We then derive the existence conditions of discrete- 2. SCALING IN DISCRETE-TIME

time deterministically self-similar signals with respect to

some specific mappings. Finally, we discuss the construc-2.1. Discrete-Time Scaling Operation

tion of discrete-time linear scale-invariant (LSI) system and ] o ) .
present results related to white noise driven system modeld>enerally the scaling or dilation operation of a discrete-
of stochastic self-similar signals. Unlike continuous-time time signalz(n) by an arbitrary factor is not well defined.

self-similar signals, it is possible to construct a wide class It i difficult to obtain an interpretation of scaling in the
of non-trivial discrete-time self-similar signals. discrete-time domain that is as unambiguous as that in the

continuous-time domain. Operations such as upsampling,
interpolation, downsampling and fractional sampling rate
alteration [2] can have a scaling interpretation. However,
This paper addresses the problem of defining and represen §.UCh operations cannot hand!e scaling factors over a con-
. ' . . : inuum. We present here a different approach to discrete-
ing discrete-time self-similar signals and systems. . . . :
i ; 7 . time scaling that can handle continuous scaling factors. We
The study of the discrete-time self-similar processes in |, .. . . . o

. ) . : . define the discrete-time scaling operation in a way that ef-

this paper is motivated in part by the previous work of Wor- . . . . .
. . : fectively amounts to converting(n) into a continuous-time

nell and colleagues [3, 4, 5] in continuous time. They pro- signal throuah an inversible manping. anolving the scalin
vide formulations involving continuous-time, scale-invariant 9 9 bping, applying 9

. . ) peration to the continuous-time signal and finally inverse
signals and systems. They also provide a detailed study o : . . . .

. mapping the signal back to the discrete-time domain. The

such systems for dyadic scale factors. Our paper here pro- Lo : i

) ) e ! . —actual definition is based on operations in the frequency do-

vides answers to questions such as: Is it possible to define

. . o . main.
purely discrete-time, self-similar signals? Are there formu-

1. INTRODUCTION

lations of discrete-time, scale-invariant systems? How do tranl_s%{rg') be a continuous-time signal at?) its Fourier

we provide a definition of dilation or scaling of discrete- '

time signal that is general enough to provide non-trivial self- 400 ,

similar signals and scale-invariant systems? The answer to FQ)=F{ft)} = / ft)e 7 dt, 1)
—00

This work was supported in part by AFOSR grant F4962093C0063 ) )
subcontract 97-0886. where—oo < Q < +o0. If f(t) is scaled by (a > 0), its



2.2. System Properties

x(n) X(@) X@| o, aX(aQ) X[ @f(w))] ()
—— DTET “‘;‘ge by £ IDTFT
a

LetS, denote the discrete-time scaling operator defined above.
Itis straightforward to verify thaf, has the following prop-

erties:

Figure 1: Block diagram of the discrete-time, continuous
scaling operator.

Fourier transform becomes

F{f(t/a)} = aF(af)), —00 < < +o00. 2
Thus, for a continuous-time signal, a scaling in time can
be accomplished in principle by a frequency-scaling of its
Fourier transform in the opposite direction along with an
amplitude scaling. Now, consider a discrete-time sequence
x(n) whose Fourier transform is

X(w)=G{z(n)} =Y a(n)e ™" ©)

The functionX (w) is 27-periodic. If we try to define a
discrete-time scaling operation by adapting (2) to (3), it will
only work for integer values af because of ther-periodicity
requirement on the Fourier transform of a discrete-time sig-
nal. This corresponds to upsampling the discrete-time sig-
nal by an integer factor ai. The implementation of our
discrete-time continuous scaling operation is as follows (see
Figure 1).

1. Given is a discrete-time signaln) with (the 27-
periodic) Fourier transfornX (w).

2. Map the principal intervab € [—7, ] to continu-
ous frequency? (the real line) through an invertible
transformatiom? = f(w).

1.
2.
3.

S, is a linear operator.
Sa (a # 1) is a time-varying operator.

S1{x(n)} = z(n) as expected. This corresponds to
the non-scaling case.

. The inverse operataf; ' {z(n)} = Si/.{x(n)} is

discrete-time scaling operation with parametét.

. Commutativity
Sa{Sp{z(n)}} = Sp{Sa{z(n)}} = Sas{z(n)}
)
. If the discrete-time Fourier spectrum in the principal

interval [—7, 7] of an input discrete-time signal is a
function of f(w), i.e.,

X(w) =T[f(w)], (6)
and the functio'(w") satisfies
T(aw') = C(a)T ('), (7)

where C(a) is a function of, then the output of the
discrete-time scaling operator is

So{z(n)} = aC(a)x(n). (8)

Property 6 provides some interesting insights into the discrete-

time scaling operation. It implies that if the inverse Fourier

3. DilateY (Q) = X (f1(2)) by the required dilation
factora to formY, () = aY (aQ).

4. FormX, (w) =Y, (f[w])

5. The sequence,(n) resulting from the inverse Fourier
transformation ofY, (w) is the continuous dilation of
z(n) bya

transform of the functiofi'[ f (w)] exists, the corresponding
time sequence represents an eigen-function of the system.
Also, when the input spectrum satisfies (6) and (7), for ex-
ample,

T() =" and henceX (w) = Tf(w)] = [F@)]', (9)

the output spectrum is identical to the input within an am-

za(n) = oG~ H{X[f ' (af (W))]}. (4)

plitude factoraC(a) (a"*! in the example). In other words,

the signal is identical to a scaled version of itself within an
whereG—! denotes inverse discrete-time Fourier transform. amplitude factor.

Some examples of(w) (w € [—m, x]) are:
e Bilinear transform.Q = f(w) = 2tan(w/2).

e 1/w-based transformQ = f(w) = =

m—[w]”

m—[w]

e log-basedtransform2 = f(w) = sgn(w) In (L)

3. DISCRETE-TIME SELF-SIMILAR SIGNALS

3.1. Self-Similarity

Two types of self-similar signals will be discussed in this
paper: deterministic and stochastic.



Definition A discrete-time sequencgn) is determin-
istically self-similar or homogeneous with degréeif it
satisfies the following relation.

So{z(n)} = a="a(n) (10)

foranya > 0. A random proces¥ (n) is said to be statisti-
cally self-similar with degreé{ if it satisfies the following
equation

Sa@{RX (TL, nl)} = aizHRX (TL, nl) (11)

foranya > 0, whereRx (n,n') denotes the auto-correlation
function of sequencé& (n), andS, ,{x(m,n)} for a 2-D
function z(m, n) is defined in lines similar to that of,.
However, the scaling operation is applied on betlandn
dimensions.

Figure 2: Eigen-functions of the discrete-time scaling oper-
3.2. Discrete-Time Homogeneous Signal ation system with respect to (a) bilinear transform¥(jo)-
based transform (ddg-based transform when= 0.5. The

As mentioned in section 2.2, the time sequence CorreSpondmagmary parts of the functions are shown.

ing to inverse Fourier transform of functigfi(w)]”, if ex-
ists, satisfies (10) witlif = —(r + 1). Thus, by choosing a
function[f(w)]" which is absolutely integrable irr to 7, .
we can derive a class of discrete-time homogeneous func® () ¥(n), (n € (—00,00)) be the input and output se-
tions. This class of homogeneous functions could provide Uence. Take an arbltrary discrete-time sequéiitg (k =
a model for discrete-time self-similar process in practice. 1» 2 -+ /) and let
They also serve as eigen-functions of the discrete-time scal-
ing operator previously defined. K

As we know, the class of continuous-time, regular, ho- Z h(k)Sk{z(n)}/k. (12)
mogeneous functions such @&) = 1 is limited. Truly k=1
continuous homogeneous signals corresponding to the spec-
trum Q" do not exist because it is not a valid Fourier spec- This defines a discrete-time LS| system. The output of the
trum. In our formulation of discrete-time self-similar func-  system is the summation of a series of dilated (by k) input
tions, we are able to derive purely discrete-time sequencesequence, weighted by the kerimgk). Figure 3 shows the
as long agf(w)]" defines a valid discrete-time Fourier spec- procedure for the implementation of the system. Note that
trum. Non-trivial discrete-time homogeneous functions ac- the choice of the one dimensional keragk) is arbitrary.
tually exist and can be derived in the following ranges of ~ Also, as mentioned in section 3, the discrete-time sequences

parameter with respect to different mappings. corresponding to spectrufif(w)]” are eigen-functions of
the discrete-time scaling operator. Inherently, they also serve

Bilinear Transform—1 1. . ) . .
¢ ear fransio <r< as the eigen-functions of the discrete-time LS| system.

e 1/w Based Transform=-1 < r < 1.

e [og-Based Transform: # —1,—2,-3, ...

*h(l)
Figure 2 shows some examples of discrete-time deter- = )
ministic self-similar functions which are derived from discrete- yo 1
time Fourier spectrurfyf (w)]'/2. f(w) is chosen as bilinear o] ®
transform 1 /w-based antbg-based transform respectively. o
4. DISCRETE-TIME LINEAR SCALE-INVARIANT | e e
SYSTEMS AND SELF-SIMILAR FUNCTIONS L= R

4.1. Discrete-Time Linear Scale-Invariant System

. ) ] o Figure 3: System diagram of the discrete-time LSI system
Alinear scale-invariant (LSI) system is a linear system whose

output is invariant to the scale changes of the input. Let



4.2. Discrete-time Statistically Self-Similar Signal

As mentioned in [1, 3], most physical processes that exhibit
statistical self-similarity are fundamentally non-stationary.
The statistical properties of the signal change with time, but
remain invariant with time scale. In this section we pro-
vide a model for such non-stationary self-similar random
processes using the discrete-time LSI system. Our imple-
mentation in discrete-time domain is based on the following
property of the discrete-time LSI system.

Theorem:|If the input sequence of a discrete-time LSI
system is discrete-time zero-mean white noise, the output
sequence of the system is non-stationary and statistically
self-similar which satisfies condition (11) wifh = —1.

proof: See [6].

Hence we can construct a non-stationary self-similar ran-
dom signal with parameteif = —1 by passing a discrete-
time zero-mean white noise through the discrete-time LSI
system. By passing the signal thus obtained through the sys-
tem again, a non-stationary self-similar random signal with
parametetd = —2 is then acquired. Following this sce-
nario, we are able to formulate a non-stationary self-similar
random process with parametlr being an arbitrary neg-
ative integer. Note that the choice of the one dimensional
kernelh(k) in our discrete-time LS| system is essentially
arbitrary. We can choose a specific kerhét) so that the

0 50 100 150 200 250 300 0 50 100 150 200 250 300
(@) (b)

0 50 100 150 200 250 300
(d)

Figure 4: Simulation of passing a zero-mean white noise
through discrete-time LS| system. The 6-tap Hanning win-
dow is used as 1-d kernel for the discrete-time LS| system.
(a) system input (b) system output (c) auto-correlation func-
tion of the output (d) contour plot of the auto-correlation

function of the output
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