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ABSTRACT

In this paper we present a novel model for purely discrete-
time self-similar processes and scale-invariant systems. The
results developed are based on a new interpretation of the
discrete-time scaling (equivalently dilation or contraction)
operation which is defined through a mapping between dis-
crete and continuous time. It is shown that it is possible
to have continuous scaling factors through this operation
even though the signal itself is discrete-time. We study both
deterministic and stochastic discrete-time self-similar sig-
nals. We then derive the existence conditions of discrete-
time deterministically self-similar signals with respect to
some specific mappings. Finally, we discuss the construc-
tion of discrete-time linear scale-invariant (LSI) system and
present results related to white noise driven system models
of stochastic self-similar signals. Unlike continuous-time
self-similar signals, it is possible to construct a wide class
of non-trivial discrete-time self-similar signals.

1. INTRODUCTION

This paper addresses the problem of defining and represent-
ing discrete-time self-similar signals and systems.

The study of the discrete-time self-similar processes in
this paper is motivated in part by the previous work of Wor-
nell and colleagues [3, 4, 5] in continuous time. They pro-
vide formulations involving continuous-time, scale-invariant
signals and systems. They also provide a detailed study of
such systems for dyadic scale factors. Our paper here pro-
vides answers to questions such as: Is it possible to define
purely discrete-time, self-similar signals? Are there formu-
lations of discrete-time, scale-invariant systems? How do
we provide a definition of dilation or scaling of discrete-
time signal that is general enough to provide non-trivial self-
similar signals and scale-invariant systems? The answer to
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the third question holds the key to answering the first two
questions. A key result of this paper is the demonstration
of the fact that it is possible to define scaling or dilation in
such a way that is continuous even though the signal itself is
discrete-time. Hereafter, we will use the term scaling exclu-
sively to mean dilation. Using this definition of scaling, we
develop definitions and constructions of deterministic and
stochastic, discrete-time, self-similar signals and discrete-
time scale-invariant systems.

2. SCALING IN DISCRETE-TIME

2.1. Discrete-Time Scaling Operation

Generally the scaling or dilation operation of a discrete-
time signalx(n) by an arbitrary factor is not well defined.
It is difficult to obtain an interpretation of scaling in the
discrete-time domain that is as unambiguous as that in the
continuous-time domain. Operations such as upsampling,
interpolation, downsampling and fractional sampling rate
alteration [2] can have a scaling interpretation. However,
such operations cannot handle scaling factors over a con-
tinuum. We present here a different approach to discrete-
time scaling that can handle continuous scaling factors. We
define the discrete-time scaling operation in a way that ef-
fectively amounts to convertingx(n) into a continuous-time
signal through an inversible mapping, applying the scaling
operation to the continuous-time signal and finally inverse
mapping the signal back to the discrete-time domain. The
actual definition is based on operations in the frequency do-
main.

Letf(t) be a continuous-time signal andF (
) its Fourier
transform:

F (
) = Fff(t)g =

Z +1

�1

f(t)e�j
tdt; (1)

where�1 < 
 < +1. If f(t) is scaled bya (a > 0), its
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Figure 1: Block diagram of the discrete-time, continuous
scaling operator.

Fourier transform becomes

Fff(t=a)g = aF (a
); �1 < 
 < +1: (2)

Thus, for a continuous-time signal, a scaling in time can
be accomplished in principle by a frequency-scaling of its
Fourier transform in the opposite direction along with an
amplitude scaling. Now, consider a discrete-time sequence
x(n) whose Fourier transform is

X(!) � Gfx(n)g =
X
n

x(n)e�j!n: (3)

The functionX(!) is 2�-periodic. If we try to define a
discrete-time scaling operation by adapting (2) to (3), it will
only work for integer values ofa because of the2�-periodicity
requirement on the Fourier transform of a discrete-time sig-
nal. This corresponds to upsampling the discrete-time sig-
nal by an integer factor ofa. The implementation of our
discrete-time continuous scaling operation is as follows (see
Figure 1).

1. Given is a discrete-time signalx(n) with (the 2�-
periodic) Fourier transformX(!).

2. Map the principal interval! 2 [��; �] to continu-
ous frequency
 (the real line) through an invertible
transformation
 = f(!).

3. DilateY (
) � X(f�1(
)) by the required dilation
factora to formYa(
) � aY (a
).

4. FormXa(!) = Ya(f [!])

5. The sequencexa(n) resulting from the inverse Fourier
transformation ofXa(!) is the continuous dilation of
x(n) by a

xa(n) = aG�1fX [f�1(af(!))]g: (4)

whereG�1 denotes inverse discrete-time Fourier transform.
Some examples off(!) (! 2 [��; �]) are:

� Bilinear transform.
 = f(!) = 2 tan(!=2).

� 1=!-based transform.
 = f(!) = !
��j!j .

� log-based transform.
 = f(!) = sgn(!) ln
�

�
��j!j

�
.

2.2. System Properties

LetSa denote the discrete-time scaling operator defined above.
It is straightforward to verify thatSa has the following prop-
erties:

1. Sa is a linear operator.

2. Sa (a 6= 1) is a time-varying operator.

3. S1fx(n)g = x(n) as expected. This corresponds to
the non-scaling case.

4. The inverse operatorS�1a fx(n)g = S1=afx(n)g is
discrete-time scaling operation with parameter1=a.

5. Commutativity

SafSbfx(n)gg = SbfSafx(n)gg = Sabfx(n)g
(5)

6. If the discrete-time Fourier spectrum in the principal
interval [��; �] of an input discrete-time signal is a
function off(!), i.e.,

X(!) = T [f(!)]; (6)

and the functionT (!0) satisfies

T (a!0) = C(a)T (!0); (7)

where C(a) is a function ofa, then the output of the
discrete-time scaling operator is

Safx(n)g = aC(a)x(n): (8)

Property 6 provides some interesting insights into the discrete-
time scaling operation. It implies that if the inverse Fourier
transform of the functionT [f(!)] exists, the corresponding
time sequence represents an eigen-function of the system.
Also, when the input spectrum satisfies (6) and (7), for ex-
ample,

T (!0) = !0r and henceX(!) = T [f(!)] = [f(!)]r; (9)

the output spectrum is identical to the input within an am-
plitude factoraC(a) (ar+1 in the example). In other words,
the signal is identical to a scaled version of itself within an
amplitude factor.

3. DISCRETE-TIME SELF-SIMILAR SIGNALS

3.1. Self-Similarity

Two types of self-similar signals will be discussed in this
paper: deterministic and stochastic.



Definition: A discrete-time sequencex(n) is determin-
istically self-similar or homogeneous with degreeH if it
satisfies the following relation.

Safx(n)g = a�Hx(n) (10)

for anya > 0. A random processX(n) is said to be statisti-
cally self-similar with degreeH if it satisfies the following
equation

Sa;afRX(n; n0)g = a�2HRX(n; n0) (11)

for anya > 0, whereRX(n; n0) denotes the auto-correlation
function of sequenceX(n), andSa;bfx(m;n)g for a 2-D
function x(m;n) is defined in lines similar to that ofSa.
However, the scaling operation is applied on bothm andn
dimensions.

3.2. Discrete-Time Homogeneous Signal

As mentioned in section 2.2, the time sequence correspond-
ing to inverse Fourier transform of function[f(!)]r, if ex-
ists, satisfies (10) withH = �(r +1). Thus, by choosing a
function[f(!)]r which is absolutely integrable in�� to �,
we can derive a class of discrete-time homogeneous func-
tions. This class of homogeneous functions could provide
a model for discrete-time self-similar process in practice.
They also serve as eigen-functions of the discrete-time scal-
ing operator previously defined.

As we know, the class of continuous-time, regular, ho-
mogeneous functions such asf(t) = 1 is limited. Truly
continuous homogeneous signals corresponding to the spec-
trum
r do not exist because it is not a valid Fourier spec-
trum. In our formulation of discrete-time self-similar func-
tions, we are able to derive purely discrete-time sequences
as long as[f(!)]r defines a valid discrete-time Fourier spec-
trum. Non-trivial discrete-time homogeneous functions ac-
tually exist and can be derived in the following ranges ofr
parameter with respect to different mappings.

� Bilinear Transform.�1 < r < 1.

� 1=! Based Transform.�1 < r < 1.

� log-Based Transform.r 6= �1;�2;�3; :::

Figure 2 shows some examples of discrete-time deter-
ministic self-similar functions which are derived from discrete-
time Fourier spectrum[f(!)]1=2. f(!) is chosen as bilinear
transform,1=!-based andlog-based transform respectively.

4. DISCRETE-TIME LINEAR SCALE-INVARIANT
SYSTEMS AND SELF-SIMILAR FUNCTIONS

4.1. Discrete-Time Linear Scale-Invariant System

A linear scale-invariant (LSI) system is a linear system whose
output is invariant to the scale changes of the input. Let

Figure 2: Eigen-functions of the discrete-time scaling oper-
ation system with respect to (a) bilinear transform (b)1=!-
based transform (c)log-based transform whenr = 0:5. The
imaginary parts of the functions are shown.

x(n), y(n), (n 2 (�1;1)) be the input and output se-
quence. Take an arbitrary discrete-time sequenceh(k) (k =
1; 2; :::;K) and let

y(n) =
KX
k=1

h(k)Skfx(n)g=k: (12)

This defines a discrete-time LSI system. The output of the
system is the summation of a series of dilated (by k) input
sequence, weighted by the kernelh(k). Figure 3 shows the
procedure for the implementation of the system. Note that
the choice of the one dimensional kernelh(k) is arbitrary.
Also, as mentioned in section 3, the discrete-time sequences
corresponding to spectrum[f(!)]r are eigen-functions of
the discrete-time scaling operator. Inherently, they also serve
as the eigen-functions of the discrete-time LSI system.
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Figure 3: System diagram of the discrete-time LSI system



4.2. Discrete-time Statistically Self-Similar Signal

As mentioned in [1, 3], most physical processes that exhibit
statistical self-similarity are fundamentally non-stationary.
The statistical properties of the signal change with time, but
remain invariant with time scale. In this section we pro-
vide a model for such non-stationary self-similar random
processes using the discrete-time LSI system. Our imple-
mentation in discrete-time domain is based on the following
property of the discrete-time LSI system.

Theorem:If the input sequence of a discrete-time LSI
system is discrete-time zero-mean white noise, the output
sequence of the system is non-stationary and statistically
self-similar which satisfies condition (11) withH = �1.

proof: See [6].
Hence we can construct a non-stationary self-similar ran-

dom signal with parameterH = �1 by passing a discrete-
time zero-mean white noise through the discrete-time LSI
system. By passing the signal thus obtained through the sys-
tem again, a non-stationary self-similar random signal with
parameterH = �2 is then acquired. Following this sce-
nario, we are able to formulate a non-stationary self-similar
random process with parameterH being an arbitrary neg-
ative integer. Note that the choice of the one dimensional
kernelh(k) in our discrete-time LSI system is essentially
arbitrary. We can choose a specific kernelh(k) so that the
output of the system exhibits the properties of the studied
physical self-similar processes. As there is no restriction on
the length of the kernel, a rich class of existing FIR or IIR
filters can be applied to model the behavior of a large variety
of self-similar random processes in practice.

Figure 4 demonstrates the effect of passing a discrete-
time zero-mean white noise through a discrete-time LSI sys-
tem. The output is a discrete-time stochastic self-similar
signal. As is known, if the system output is wide-sense sta-
tionary, the 2-D plot of auto-correlation function of the out-
put signal will consist of a series of diagonal straight con-
tour. The auto-correlation plot in Figure 4 clearly demon-
strate the non-stationary property of the output signal.

5. CONCLUSION

In this paper we present a novel model for discrete-time self-
similar processes based on a new discrete-time continuous-
dilation operation. This model can be viewed as an ap-
proach to study the properties of a uniformly sampled self-
similar signal. The discrete-time LSI system based on this
discrete-time scaling operation provides a potential tool for
the analysis and simulation of natural self-similar processes
because of its scale-invariant property and flexibility in the
choice of one dimensional kernel. It can be emphasized that
the study of discrete-time LSI systems deserves further in-
vestigation and could contribute to deeper insight into frac-
tals or wavelet applications.

Figure 4: Simulation of passing a zero-mean white noise
through discrete-time LSI system. The 6-tap Hanning win-
dow is used as 1-d kernel for the discrete-time LSI system.
(a) system input (b) system output (c) auto-correlation func-
tion of the output (d) contour plot of the auto-correlation
function of the output
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