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ABSTRACT

This paper presents a new technique which exploits constrained
optimization methods to derive optimal two dimensional filters
in the cumulant domain for processing signals in non Gaussian
noise, or signals with corrupting interferences which have non
symmetrical probability density functions.

The approach proposed here for enhancing signals in such noise
is important, as increasingly practical engineering application
areas are identifying occasions where the perceived wisdom of
modelling signals in additive Gaussian noise simply does not
hold. Since the bispectrum of non Gaussian noise and
interference is not zero, it corrupts the bispectrum of the signal.
Thus filters that suppress the bispectral component of the noise
and enhance the signal bispectrum, are required.

The two dimensional filters  proposed in this paper have the
property of concentrating the filter energy into a hexagonal
region in the bispectral domain. This leads to an impulse
response for these filters which represents a new form of two
dimensional discrete prolate spheroidal sequence.

The sensitivity of cumulant determination to non Gaussian
noise has been noted in the area of array processing [10].
However this paper presents  one of the first attempts to remove
non Gaussian noise by cumulant filtering.

.

1. INTRODUCTION

This paper addresses a new problem in Higher Order Statistics
(HOS), that of low pass filtering in the two dimensional
cumulant domain  which exploits third order statistical based
algorithms operating on data where the assumption of additive
Gaussian noise to a signal does not hold.

The filters presented in this paper concentrate the filter energy
into a desired region in the bispectral domain which leads to an
impulse response and magnitude squared function for these
filters, that represent a new form of two dimensional discrete
prolate spheroidal sequence (DPSS) and discrete prolate
spheroidal wave function (DPSWF) respectively. The
fundamental properties of one dimensional DPSS can be found
in [2] and their application to one dimensional finite impulse
response (FIR) filters in [3,4]. The extension of these techniques
to one dimensional infinite impulse  response (IIR) filtering was
presented by the authors in [5,6], and extended to two
dimensional filters with circularly symmetric passband in [7].

1.1 Problem Definition

Consider a zero mean signal sequence  {x(n)} whose first three
cumulants are defined as [1]:

where E[.] represents the expectation operator. It is observed
that the second order cumulant C2(p) is simply the
autocorrelation sequence of {x(n)} and consequently the power
spectrum of the sequence is just the Fourier transform of C2(p).
The two dimensional Fourier transform of the third order
cumulant
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is referred to as the bispectrum of the sequence {x(n)} [1]. One
of the most important properties of HOS is that if {x(n)} is a
zero mean white Gaussian process, then C3(p,q) = 0 for all
values of p and q. This is often exploited in signal processing by
assuming that the underlying corrupting noise on a signal is
Gaussian, and that consequently the bispectrum of a signal plus
noise is simply the bispectrum of the signal.

The fundamental problem addressed in this paper is to accept
that in some instances the corrupting noise is non Gaussian and
to consider the design of two dimensional digital filters that can
be applied to the third order cumulant plane to bandlimit the
noise to the bandwidth of the underlying signal. This should
enable the bispectrum of a signal to be determined even after it
has been corrupted by the bispectrum of non Gaussian noise.

This paper is organized as follows. In Section 2 the philosophy
and the design procedure for two dimensional cumulant filters is
introduced.  Section 3 explains how the impulse response of
these filters is a new form of DPSS. Some results are presented
for noise corrupted data taken from a rotating shaft, and finally
conclusions are presented.

2. CUMULANT FILTER DESIGN

2.1 Design Philosophy

The design philosophy for the new third order cumulant filters
follows that published in [3,4,5,6] for one dimensional digital
filters based upon DPSS. It was shown in [2] that a one
dimensional DPSS is the sequence from all possible sequences
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of finite order N, which concentrates the maximum energy into a
finite bandwidth ±ω 0 . It is a simple step to take this idea a

stage further [3,4] by defining such an Nth order DPSS as the
impulse response of a one dimensional digital FIR filter, which
will then be optimal in the sense that the energy concentration
in the filter passband will be a maximum for that order of filter.

In this paper a two dimensional FIR digital filter will be derived
which for all such filters of order N x N turns out to be the one
that concentrates the maximum energy into a desired volume in
the bispectrum domain: hence the two dimensional impulse
response must be a new form of DPSS. The derivation will
follow [5,6,7] in that the energy in the filter passband will be
maximized using classic Lagrangian multiplier techniques.

2.2 Transfer Function Derivation

The derivation begins by considering a two dimensional non
separable FIR filter transfer function of the form:
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The frequency response of this transfer function is given by:
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the row ordered equivalent vector.

T represents the transpose operation, ⊗ the Kronecker product
of two vectors, and it is assumed in 4 that the two sampling
frequencies are normalized to unity.

The magnitude squared function for this filter is given by:
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where * represents complex conjugate transpose. The matrix Q
is N2 x N2 square matrix whose elements are given by the kernel
exp[ ( ( ) ( )]j f r p f s q2 1 2π − + −

The technique employed in this filter design is to maximize the
volume (energy) under the magnitude squared function in the

passband, subject to the constraint ATA is a constant. Initially
the justification for this constraint is to ensure that the trivial
solution that all the coefficients of A are unity is avoided, but it
will be shown later that this constraint also leads to a new form
of DPSS with its inherent energy concentrating properties.

The next problem is to define the filter passband in the
bispectral domain. It is known that the bispectrum of any
lowpass signal will always be concentrated into a hexagonal
region in the two dimensional bispectral domain [8], and
therefore the passband of a low pass cumulant filter is shown in
Figure 1. It is observed from eqn. 5 that the volume under the
magnitude squared function in the region of interest is
equivalent to evaluating the following integral for the terms in

the matrix Q.

Figure 1. Basic Hexagonal Shape of the Bispectrum of
an ideal Bandlimited Signal
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where D is the hexagonal region in Figure 1. It is observed that
the integral in eqn. 6 can be simplified by noting that the
hexagonal region D consists of two square regions D1 and D2

and two triangular regions D3 and D4. Considering the volume
under D1 first.
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which evaluates to
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The volume under the square region D2 can be obtained in a
similar manner, and combined with eqn. 8 to yield the volume
under the combined square regions D1 and D2.
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Now consider the volume under D4 in Figure 1.

I j f r p f s q df df
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If the following substitution is made
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then eqn. 10 can be rewritten as
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which evaluates to
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By obtaining the volume under D3 in a similar manner, the
volume under the triangular regions D3 and D4 can be evaluated
to be
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The total volume under the hexagonal region in Figure 1 can be
obtained from eqns. 9 and 13
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The volume of the magnitude squared function of the two
dimensional digital filter under the hexagonal region in the f1-f2
plane in Figure 1 is given by ATPA where P is an N2 x N2 block
Toeplitz matrix with coefficients given by eqns. 9,13,14.

The filter coefficients are obtained by maximizing the energy in
the filter passband subject to a quadratic constraint. The cost
function becomes

J KT T= − −A PA A Aλ( )                                                  15

where λ is the Lagrangian multiplier. Differentiating eqn. 15
with respect to A, and setting this derivative equal to zero
produces

PA A= λ                                                                              16
From eqn. 16 it is observed that the volume under ATPA in the
filter passband is maximized subject to the quadratic constraint
ATA=K, if the Lagrangian multiplier λ is an eigenvalue of the
matrix P, and the filter coefficient vector A is an eigenvector of
P. To determine which eigenvalue of P yields the optimal

solution, substitute eqn. 16 into the expression for the volume
under ATQA in the passband to obtain:
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It is observed that the volume in the filter passband is
maximized if A is an eigenvector associated with the largest
eigenvalue of P.

3. TWO DIMENSIONAL
HEXAGONAL DPSWF AND DPSS

Eqn. 17 can be rewritten as

λ = A PA
A A

T
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Note that eqn.18 is the ratio of the energy in the two
dimensional hexagonal region in the filter passband to the total
energy over the whole two dimensional region of support for the
filter. Eqn. 18 is also a Rayleigh quotient, and such quotients
are maximized when A is an eigenvector of P associated with
the largest eigenvalue λ = λmax. This has already been seen to be
the case for these two dimensional filters. Therefore these two
dimensional filters are optimal in the sense that for all two
dimensional non separable filters of order N these are the ones
that concentrate the maximum energy into the hexagonal region
in the bispectral domain. Therefore using similar arguments and
definitions as [2] it is seen that the filter coefficient matrix
obtained from A via eqn 4 is a form of two dimensional discrete
prolate spheroidal sequence and the filter frequency response is
a scaled discrete prolate spheroidal wave function.

5. RESULTS

As an example consider data obtained from measurements on a
rotating shaft  of a  machine. This data is essentially low pass in
character with two dominant frequencies and it's bispectrum is
shown in Figure 2. The data was corrupted with noise having an
exponential distribution and the resulting bispectrum shown in
Figure 3. This corrupted signal was filtered using a two
dimensional  cumulant filter with N=3 and a value of A=0.25
(see Figure 1), and the resulting bispectrum of the filtered signal
shown in Figure 4.  It is observed that the effect of the
exponential noise has been considerably reduced.

6. CONCLUSIONS AND
APPLICATIONS

This paper has considered the situation in which the corrupting
noise on a signal is non Gaussian in character. Examples  of non
Gaussian noise are occurring in many areas: for example recent
studies of flicker noise processes in hydrogenated amorphous
silicon [9], extracted the non Gaussian noise component using a
4th order correlation technique which is very similar to many of
the concepts used in HOS.

It has already been reported that non Gaussian noise can cause
problems when cumulants are used in signal processing
applications [10]. In an array processing application in [10] an



additional noise determining transducer was used to cancel
noise and interference, but in other circumstances it becomes
appropriate to filter noise from signals and it has been shown in
this paper that it is possible to consider filtering in the two
dimensional third order cumulant domain.

The equivalent to low pass filtering in the discrete time domain
is filtering over a hexagonal region in the cumulant domain and
the design of such filters has been considered. In particular the
maximization of the filter energy in the hexagonal region subject
to a quadratic constraint imposed upon a vector derived from the
two dimensional filter matrix has been introduced. It has been
shown that this method is equivalent to maximizing the energy
concentration of such a two dimensional filter into the
hexagonal region in the two dimensional bispectral domain, and
consequently the filters produced lead to a new form of two
dimensional discrete prolate spheroidal sequence.
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Figure 2: Bispectrum of Original Vibration Data

Figure 3 Bispectrum of Original Data Corrupted by
Exponential Noise

Figure 4 Bispectrum of Corrupted Data filtered by
Cumulant Filter:   N=3,  A=0.25.
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