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ABSTRACT 1.1 Problem Definition
This paper presents a new technique which exploits constrained ) ) )
optimization methods to derive optimal two dimensional filters Consider a zero mean signal sequence {x(n)} whosethree
in the cumulantiomain for processingignals in non Gaussian ~cumulants are defined as [1]:
noise, or signals with corrupting interferences which have non C (n) = H X 1]
symmetrical probability density functions. C(M=EX0) X+ 1

The approach proposed here for enhansiggals in such noise —

is important, as increasingly practical engineering application Gpa=HXnXn pr 1

areas arédentifying occasions whertne perceivedvisdom of where E[.] representghe expectation operator. It @bserved
modelling signals in additive Gaussian noise simply does not that the second order cumulantCy(p) is simply the
hold. Since the bispectrum ofion Gaussian noise and autocorrelation sequence of {x(n)} and consequetti/power
interference is not zero, it corrugtee bispectrum of the signal.  spectrum of the sequence is just the Fourarsform of G(p).
Thus filters that suppress the bispect@inponent othe noise The two dimensional Fourier transform tfie third order

and enhance the signal bispectrum, are required. cumulant

The two dimensionafilters proposed irthis paperhave the S (w,,w,) = Z Z C(paexpF j(mo,+ @,)] 2
property of concentratinghe filter energy into a hexagonal 7 T

region in the bispectral domain. This leads to an impulse g referred to as the bispectrum of the sequence {§l})JOne
response fothese filters which represents a néwm of two of the most important properties of HOS tisat if {x(n)} is a
dimensional discrete prolate spheroidal sequence. zero mearwhite Gaussian process, then(f5g) = O for all

values of p and g. This is often exploited in signal processing by
assuming that theinderlying corrupting noise on a signal is
Gaussian, and thabnsequentlyhe bispectrum of a signal plus
noise is simply the bispectrum of the signal.

The sensitivity of cumulant determination to non Gaussian
noise has been noted in the areaaofay processing [10].
However this paper presents one of the first attemptnove
non Gaussian noise by cumulant filtering.

The fundamental problem addressedtiis paper is taccept
that insome instancethe corrupting noise is non Gaussian and
to consider the design tfo dimensional digitafilters that can
1. INTRODUCTION be applied to the third order cumulant plane to bandlimit the
doise to the bandwidth of thenderlying signal. This should
enable the bispectrum of a signal to be determéawexh after it
has been corrupted by the bispectrum of non Gaussian noise.

This paper addresses a new problem in Higher Order Statistic
(HOS), that oflow pass filtering in thetwo dimensional
cumulant domain which exploitthird order statistical based
algorithms operating on data where the assumption of additivetnis paper is organized as follows. In Sectioth@philosophy
Gaussian noise to a signal does not hold. and the design procedure for two dimensional cumulant filters is
introduced. Section 3 explain®w the impulse response of
these filters is a neform of DPSS. Someesults are presented
for noise corruptediata takerfrom a rotatingshaft, andinally
conclusions are presented.

The filters presented in this papssncentratdhe filter energy
into a desired region ithe bispectralomain which leads to an
impulse response and magnitude squared fundtoonthese
filters, that represent a neferm of two dimensional discrete
prolate spheroidal sequence (DPSS) and discrete prolate

spheroidal wave function (DPSWF) respectively. The 2. CUMULANT FILTER DESIGN
fundamental properties of one dimensional DPSS caiourel

in [2] and their application t@ne dimensional finite impulse
response (FIR) filters in [3,4]. The extension of these technique
to one dimensional infinite impulse respoii$R) filtering was
presented by the authors in [5,6], and extended to two
dimensional filters with circularly symmetric passband in [7].

2.1 Design Philosophy

SThe design philosophfpor the new third order cumulant filters
follows that published in [3,4,5,6br one dimensionatligital
filters based upon DPSS. It wahown in [2] that a one
dimensional DPSS ithe sequenc&om all possiblesequences



of finite orderN, which concentrates the maximum energy into a
finite bandwidth +w,,. It is a simple step to take this idea a

stage further [3,4] by defining such &lth order DPSS as the
impulse response of a one dimensional digii& filter, which
will then be optimal in the sense that thrgergy concentration
in the filter passband will be a maximum for that order of filter.

In this paper a two dimension@lR digital filter will be derived
which for all such filters of ordeN x N turns out to be the one
thatconcentrates themaximum energy into desiredvolume in
the bispectrumdomain: hencethe two dimensional impulse
response must be a ndarm of DPSS.The derivation will
follow [5,6,7] in that theenergy inthe filter passband will be
maximized using classic Lagrangian multiplier techniques.

2.2 Transfer Function Derivation

The derivation begins by considering a two dimensional non
separable FIR filter transfer function of the form:

N

N
Hz.z2)=) > 3,72" 2"
p=lq

=1
The frequency response of this transfer function is given by:

H(eJZTprl eJZTIfz) = q e—JZTIflp éj2nfg =ATe 4

)

where
elT — (e—JZI'Lf1 e—]41'f1 gl Z\Iﬁl)
e2T — (e—JZrsz e—]4Tf2 e—J 2Nrf2)

e=egles
{apg = 2-D filter coefficients, and

0
U
0
Ethe row ordered equivalent vector.
0

T represents the transpose operatibhthe Kronecker product
of two vectors, and it is assumed intlat thetwo sampling
frequencies are normalized to unity.

The magnitude squared function for this filter is given by:

2

=ATee A= ATQA 5

He™ é)

where * representsomplex conjugate transpose. Timatrix Q
is N? x N? square matrix whose elemeai®given bythe kernel

expli2n(f, ¢ -p)+f,6-q)]

The techniquemployed inthis filter design is tanaximize the
volume (energylunder the magnitude squaréghction in the

passband, subject to the constraiA is a constant. Initially
the justificationfor this constraint is to ensure that the trivial
solution thatall the coefficients ofA areunity is avoidedput it
will be shownlater that this constraint also leads to a rietmn

of DPSS with its inherent energy concentrating properties.

The next problem is to define the filter passband in the
bispectral domain. It is knowmhat the bispectrum of any
lowpass signal will ahays be concentrated into a hexagonal
region in the two dimensional bispectral domain [8], and
therefore the passband ofoav pass cumulant filter ishown in
Figure 1. It is observed fromqgn. 5 that thesolumeunder the
magnitude squared function ithe region of interest is
equivalent to evaluating thellowing integralfor the terms in

the matrixQ.

-A

Figure 1. Basic Hexagonal Shape tife Bispectrum of
an ideal Bandlimited Signal

I :IIeXp[j 2T[(f1¢ - p)+ fz@ - q)]dfldfz

whereD is thehexagonal region in Figure 1. It is obsenthdt
the integral in eqgn. &an be simplified by notinghat the
hexagonal regio consists of two square regiobs and D;
and two triangular region®3; and D4. Considering thevolume
underD; first.

I, = [df, [expli2n(f,¢ —p)+ f,(6 - a)ldi 7

-A
which evaluates to

I, = A’sindmA(s— Q). sin€mtA r— p)
exp(rA[(s— )= (r= p))

The volume under the squaresgion D, can be obtained in a
similar manner, and cdmmedwith egn. 8 to yieldhe volume
under the combined square regi@hsandD..



| =2AZ%in r = p)). sin s— Q) solution, substitute eqn. 16 into the expressmnthe volume
> AMALT = ). SinGmA(s— 9) underATQA in the passband to obtain:
cosTA[(S- )~ (r— p)]

Now consider the volume undBgin Figure 1. L=ATPA=)ATA 17
It is observedthat the volume in the filter passband is
l, :H expfj2rn(f, ¢ -p)+f,6-q))df.df, 10 maximized if A is an eigenvector associated witie largest
D, eigenvalue of.

If the following substitution is made

_ 3. TWO DIMENSIONAL
f =u HEXAGONAL DPSWF AND DPSS

f,=v-u
Eqn. 17 can be rewritten as
then eqgn. 10 can be rewritten as .
A v A :_A PA 18
l, :Idvj exp[j2r( - p)v-u)lexp[j2rt(s— qujdu 11 ATA
o 0 Note that egqn.18 is the ratio of thenergy in the two
dimensional hexagonal region the filter passband to the total
A energy ovethewhole two dimensional region of support for the
l, = oS — ) — (1 — * filter. Eqn. 18 is also d&ayleigh quotientand such quotients
jerf(s =9 =(r - p| are maximized wherA is an eigenvector d? associated with
[ejm(s— q)sindT[A( s- Q) - gAr-p sincft A r- p))] 12 the largest eigenvalde= Amax. This has already been seen to be
the casdor thesetwo dimensionafilters. Therefore these two
dimensional filters are optimal in the sense tfatall two
By obtaining thevolume under Dz in a similar manner, the  dimensional non separabfiters of orderN these are thenes

volumeunder the triangular regiofs andD, can be evaluated thatconcentratehe maximum energy intthe hexagonal region

which evaluates to

to be in the bispectral domain. Therefore using similar arguments and
definitions as [2] it isseen that the filtecoefficient matrix
_ A obtained fromA via eqn 4 is dorm of twodimensional discrete
i = [(s-9—(r- p] * prolate spheroidal sequence and the fiitequency response is

a scaled discrete prolate spheroidal wave function.

[(s— Qsiné(mA s= ) - (r- psiné LA p)] 13
5. RESULTS

The totalvolumeunder thehexagonal region in Figure 1 can be As an example consider data obtaitfi@n measurements on a
obtained from eqns. 9 and 13 rotating shaft of a machine. This data is essentiadlypass in
character with two dominant frequencies and it's bispectrum is

I =lgq+ 1y 14shown in Figure 2. The data was corrupted with nbééng an

The volume of the magnitude squarefiinction of the two exponential distribution and the resulting bispectshown in
dimensional digital filter under theexagonal region ithe f1-f> Figure 3. This corrupted signal was filtered using a two
plane in Figure 1 igiven byA"PA whereP is anN* x N? block dimensional cumulant filter with=3 and a value oA=0.25
Toeplitz matrix with coefficients given by eqgns. 9,13,14. (see Figure 1), and the resulting bispectrum of the filtered signal

shown in Figure 4. It is observetthat the effect of the

The filter coefficientsare obtained bynaximizingthe energy in exponential noise has been considerably reduced.

the filter passband subject to a quadratic constraint. cbsé

function becomes 6. CONCLUSIONS AND
J=ATPA-AATA - K) 15 APPLICATIONS

This paper has considered the situatiomvirich the corrupting
where ) is the Lagrangianmultiplier. Differentiating eqn. 15 nojse on a signal is non Gaussian in character. Examples of non
with respect toA, and setting this derivative equal zero Gaussian noise a@curring in manyareas: for example recent
produces studies of flicker noise processes higdrogenated amorphous
ilicon [9], extractedhe non Gaussian noissomponent using a

PA=MA - T 16 order correlation technique whichvery similar tomany of
Fromeqgn. 16 it is observeithat thevolumeunderA 'PA in the the concepts used in HOS.

filter passband is maximized subject to the quadratic constraint

ATA=K, if the Lagrangianmultiplier A is an eigenvalue of the It has already been reportétht non Gaussian noise can cause
matrix P, and the filtercoefficient vectorA is an eigenvector of ~ problems when cumulants are used in sigpabcessing

P. To determine which eigenvalue & yields the optimal  applications [10]. In an array processing application in [10] an



additional noise determining transducer was usectaocel
noise and interference, but in other circumstancdsedébmes
appropriate to filter noisfom signals and it has beamown in
this paper that it is possible tonsider filtering in the two
dimensional third order cumulant domain.

The equivalent to lowpass filtering in the discrete tintwmain

is filtering over a hexagonal region ihe cumulantdomain and

the design of such filters has been considered. In particular the
maximization of the filter energy in the hexagonal region subject
to a quadratic constraint imposed upon a vector defiosd the

two dimensionafilter matrix has been introduced. It has been
shownthat thismethod is equivalent to maximizirie energy
concentration of such a two dimensionilter into the
hexagonal region ithetwo dimensional bispectral domain, and
consequentlythe filters producedlead to a newform of two
dimensional discrete prolate spheroidal sequence.
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Figure 3 Bispectrum of Original Data Corrupted by
Exponential Noise
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Figure 4 Bispectrum of Corrupted Data filtered by
Cumulant Filter: N=3, A=0.25.



