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ABSTRACT

In this paper, the blind estimation of wireless CDMA receiver co-
efficients from the second order statistics of the signals is consid-
ered. Although many algorithms have been proposed so far, their
performance analysis has always been carried out assuming perfect
receiver coefficients estimation and/or under time-invariant condi-
tions. In this article, we present some decision-directed blind al-
gorithms and use a time-varying vector channel simulator to com-
pare their performance with those of many recently proposed al-
gorithms. It is shown that decision-directed chip-level algorithms
can operate without the use of training sequences to avoid catas-
trophic error propagation, and that one should not expect an in-
crease in performance from using least squares instead of least-
mean-square. Furthermore the unpracticability of the bit-level al-
gorithm [1] and of the least significant algorithm [4] under time
varying environment is outlined. The performance of the principal
component (Stanford) algorithm [7] is also studied.

1. INTRODUCTION

To increase the capacity of CDMA wireless systems which is inter-
ference limited, the negative effects of interchip-interference (ICI)
and/or multiuser interference (MUI) must be reduced. Recently,
2-D RAKE receivers have been proposed to reduce these inter-
ferences by exploiting both the spatial and temporal diversity of
the channel [3]. The effectiveness of using such an approach rely
heavily on the estimation procedure used to obtain the coefficients
of the 2-D RAKE receivers. In this paper, blind estimation of the
receiver coefficients is considered.

Blind estimation exploiting the second order cyclostationarity
property of the oversampled received signals [11] is not considered
because of the increase in the problem dimensionality resulting
from oversampling. Algorithms based on higher order statistics
(e.g. [5]) are known to exhibit a relatively slow convergence [11]
and are therefore not analyzed here. Only algorithms based on the
second order statistics (SOS) of the signals are being considered
in this study.

Many estimation procedures based on the SOS have been pro-
posed so far (e.g. [1, 4, 7]). The performance analysis of such
algorithms has always been carried out assuming perfect estima-
tion of the receiver coefficients and/or assuming a time-invariant
channel. In this article we use the time-varying (mixed-phase)
channel simulator for the uplink transmission presented in [9] to
evaluate and compare the performance of many blind estimation

algorithms based on SOS. We consider different values of signal
to interference plus noise ratio (SINR) and mobile speed.

2. DATA MODEL

We consider an asynchronous CDMA system with multiple re-
ceivers at the base station only. Under the narrowband array as-
sumption (the array size must be� the speed of light divided by
the bandwidth of the incoming signal), the multipath transmission
between the mobile of interest and theNe-element antenna array
can be represented by a baseband FIR vector channel.

The transmission system is modeled as a single-input multi-
output (SIMO) discrete system, where the signals are sampled
once every chip. The discrete-time version of the basebandNe-
dimensional vector channel impulse response is denoted byhk(j),
where the chip indexj correspond to the source excitation time and
k is the time-differentiable path index (in order for two paths to be
time-differentiable, their relative delay of arrival must be greater
then the inverse of the bandwidth of the transmitted signal). The
baseband model for theNe-dimensional sampled received signals
at the base station receivers is

s(j) ,
M�1X
k=0

hk(j � k)z(j � k) + e(j) (1)

whereM is the number of time-differentiable paths,z(j) is the
chip sequence, ande(j) is the noise vector (including MUI). As-
suming that each transmitted bit is spread intoL chips, the aperi-
odic spreading code for thenth bit, I(n), is denoted bym(n) =

[m(nL) : : : m(nL+ L � 1)]T , wherejm(nL + j)j is normal-
ized to one, so that

z(j) = I(n)m(nL+ j); n =

�
j

L

�
: (2)

Note that if QPSK is used, the spreading code is complex.
The following assumptions are made: the information symbols

I(n) are binary and independent; the spreading codes are complex
binary; the noise vectore(j) in (1) is zero-mean and white in time
and space.

3. 2-D RAKE RECEIVER

The standard RAKE receiver [8] is a scalar filter that combines the
time-differentiable paths of a received signal. Recently, a space-
time generalization of the RAKE filter has been proposed [3] to



exploit not only the path diversity but also the spatial diversity of
the channel. The 2-D RAKE receiver for CDMA is illustrated in
Fig 1. In this figure,si(j) is the signal received at theith an-
tenna and sampled at the chip rate;gki(j) is thekth coefficient
for the receiving filter of orderN corresponding to theith an-
tenna;I 0(n) is the transmitted bit estimate which is equal to the
sign of the real part ofy(n), the despreader output. This de-
spreader simply multiplies the spreading sequence for thenth bit
with the filtered received signal corresponding to that same bit and
does a summation over the chips. The signals being feed into
the despreader are therefore at the chip rate while those coming
out are at the bit rate. In order for the 2-D RAKE receiver to
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Figure 1: 2-D RAKE receiver for CDMA.

properly detect thenth transmitted bitI(n), one must select the
appropriateNeN -dimensional channel-dependent weight vector
g(j) =

�
g00(j) g01(j) � � � gN�1;Ne�1(j)

�T
.

The optimum receivers directly obtain the estimate of the op-
timal equalizer coefficients from the recursive minimization of a
given error criterion. The various optimum receivers differ by the
type of error criteria or by the type of adaptive algorithms used to
obtain the coefficients. Presented next are the three error criteria
that we consider.

3.1. Chip-level mean-square error on the transmitted signal

One commonly used criterion to minimize is the chip-level mean-
square error (MSE), defined as

E
n
g(j)HsN (j)� I(n)m(nL+ j)

o
; (3)

where

sN (j) ,
�
sH(j) � � � sH(j +N � 1)

�H
: (4)

The optimalg(j) in that case is given by

g(j) = R
�1

sN ;sN
(j) rN (j); (5)

whereRsN ;sN (j) = E
�
sN (j)sHN (j)

	
andrN (j) =

E fsN (j)I(n)m�(n; j � nL)g. From (1), (2) and (4), it can be
shown that (assuming here thatN > M )

rN (j) =
�
hH0 (j) � � � hHM�1(j) 0 � � � 0

�H
: (6)

One can show thatRsN ;sN (j) tends towards a scaled identity ma-
trix as the number of interferes surrounding the base increases.
That means that in such a case the optimal receiver coefficients
for the kth path are well approximated bygk(j) = hk(j), k =
0; : : : ; N � 1 (channel matched filter).

3.2. Bit-level mean-square error on the transmitted signal

An alternate way to look at the optimum receiver is to consider the
following bit-level mean-square error:

E
�
jy(n)� I(n)j2

	
=E

n
jgHSN (n)m�(n)� I(n)j2

o
(7)

=E
n
jgHxN(n)� I(n)j2

o
(8)

where

SN(n) =
�
sN (nL) � � � sN(nL + L� 1)

�
; (9)

xN(n) = SN (n)m�(n); (10)

and we temporarily suppose that the receiver coefficients (the ele-
ments ofg) are time-invariant over the observation interval. The
optimum receiver coefficients are then given by

g(n) = R
�1

xN ;xN
(n) rN (n); (11)

whereRxN ;xN (n) , E
�
xN (n)xHN (n)

	
. One can show that

the equalizer coefficients given by (5) and (11) both minimize (3)
and (8) [4], i.e. the optimal chip-level and bit-level equalizers give
identical SINR after convergence.

3.3. Chip-level mean-square error on the received signal

From (5) and (6) one can see that the optimal receiver can be
easily obtained from the channel estimate. The channel estima-
tion procedure can be done independently for each antennai and
generally involves the minimization of a mean-square-error per-
formance measure such as (i = 0; 1; : : : ; Ne � 1)

E
�
jjsi(n)�G(n)hhhijj

2
	

(12)

where

si(n) =
�
si(nL) � � � si(nL + L� 1)

�T
(13)

G(n) =

2
6664

z(nL) � � � z(nL�N + 1)
z(nL+ 1) � � � z(nL�N + 2)

... � � �
...

z(nL+ L� 1) � � � z(nL+ L�N)

3
7775 (14)

hhhi =
�
h0i h1i � � � hN�1;i

�T
(15)

si(nL + j) is the(i + 1)th element of the vectors(nL + j) in
(1), andhki is the(i+1)th element of the vectorhk in (1) that we
want to estimate.

4. BLIND ALGORITHMS FOR RAKE RECEIVERS

In this section, the various blind algorithms considered are intro-
duced. The three subsections correspond to the three error criteria
presented in the previous section.

Note that decision-directed blind equalization schemes exploit-
ing the known spreading code in CDMA give and ambiguity in the



sign of the detected bit sequence. Differential encoding/decoding
of the bit sequences must therefore be used at the transmitter/recei-
ver to ensure proper detection. Other blind equalization schemes
which are based on the computation of an eigenvector exhibit a
phase ambiguity in the post-decision variabley(n) sequence, dif-
ferential decoding is then done on this sequence rather than ulteri-
orly on the bit sequence.

4.1. Chip-level equalizer

4.1.1. Decision-directed chip-level algorithms (MMSE-C)

We propose to use a vectorial decision-directed version of the error
criterion (3):

E
n
jjgHSN (n)� I 0(n)mT (n)=Ljj2

o
(16)

Note that by using a vectorial form the adaptation is done once a bit
even if a chip-level error criterion is used. The least-mean-square
(LMS), the direct matrix inversion (DMI) and the recursive least
squares (RLS) algorithms [6] can be used to recursively update the
channel coefficients. Depending on which adaptation algorithm
is used, we will refer to the equalizer algorithm as the LMS-, the
DMI- or the RLS-MMSE-C (where the -C stands for chip-level).

4.1.2. Least significant equalizer (LSE) [4]

The least significant equalizer is in fact the zero-forcing equalizer
for an underloaded CDMA system where the number of effective
antennas is greater than the number of time-indifferentiable mul-
tipath reflections in any time-differentiable path. In this case it is
possible to perfectly recover the transmitted signals with a single-
user receiver in the absence of ambient noise. The least signifi-
cant equalizer is optimum in a deterministic sense in interference
suppression even if the number of users is too high to permit zero-
forcing conditions [4].

Assume thatg corresponds to a zero-forcing equalizer for (16),
we havegHS(n) = I 0(n)mT (n)=L. The only unknowns areg
and the transmitted bits,I 0(n). A minimization problem with re-
spect to these unknowns can therefore be formulated and the re-
sulting optimal receiver coefficient vector is given by the least sig-
nificant eigenvector ofRSN ;SN (n) � RxN ;xN (n)=L [4]. Note
that this algorithm is not decision-directed.

4.2. Bit-level equalizer (MMSE-B) [1]

The cost function to minimize is a decision-directed version of
(8): E

n
[I 0(n)� y(n)]

2

o
. The LMS, DMI and RLS algorithms

are used to recursively update the channel coefficients. The LMS
algorithm was used in [1]. Depending on which adaptation algo-
rithm is used we will refer to the equalizer algorithm as the LMS-,
the DMI- or the RLS-MMSE-B (where the -B stands for bit-level).

4.3. Via channel estimation (CE)

4.3.1. Decision-directed algorithms

We propose to use the cost function (12) with the matrixG(n)
replaced by its estimate obtained from the known code and the past
detected bits (decision-directed). The channel estimation is done
independently for each antennak = 0; : : : ; N � 1. Once again
the LMS, DMI and RLS algorithms can be used and depending

i = 0 i = 1 i = 2 i = 3
�i (degrees) 90 150 270 30

2�i (degrees) 5 10 2 5

Table 1: Path angle of arrival parameters.

on which is chosen we will refer to the equalizer algorithm as the
LMS-, the DMI- or the RLS-CE. Note that sincez(j) has a null
autocorrelation for non-zero lags, the matrix to invert in DMI-CE
will be close to a scaled identity matrix. Its computation might
therefore be unnecessary.

4.3.2. Principal Component algorithm (PC-MMSE)

This algorithm, commonly referred to as the Stanford algorithm,
is based on the following observation [10]:

RxN ;xN (n)�RSN ;SN (n) =
�
L2 � L

�
rN (n) rHN (n); (17)

whereRSN ;SN (n) , E
�
SN(n)SHN (n)

	
. This indicates that

rN (n) can be determined as the principal eigenvector of the dif-
ference between the post- and pre-despreading correlation matri-
ces. Once this eigenvector is calculated the optimal receiver coeffi-
cients can be obtained from (5) and the estimated pre-despreading
correlation matrix. Note that in this paper, contrarily to what is
done in [7], we take a composite channel approach (as in [4]) to
deal simultaneously with all paths so that coherent combining is
possible at the receiver.

5. NUMERICAL RESULTS AND CONCLUSIONS

We considerM = N = 4 time-differentiable paths andNe = 3
receiving antennas uniformly distributed around a horizontal cir-
cular array and separated by half a wavelength. To simplify the
analysis of the directivity of the channel we assume that all the
propagation paths lie in the same plane as the array, and that they
are uniformly distributed in azimuth angle in�i � �i, where�i
is the mean angle of arrival and2�i is the angle spread for the
ith path (see Table 1). The carrier frequencyfc is 1GHz and the
transmitted signal bandwidthB is 1:25MHz. The spreading fac-
torL = 128. The voice activity factor is 0.4.

Fig. 2 illustrates the convergence behavior of the BER versus
time for v = 15m=s, Nu = 200; v = 30m=s, Nu = 200; and
v = 30m=s,Nu = 80, wherev is the mobile speed andNu is the
number of interferes. The number of realizations used to obtained
the estimate is 4800. From the observation of these results and
similar ones, we come to the following conclusions:

1. The convergence of the LSE equalizer is extremely slow and
precludes its usage in a time-varying environment.

2. Bit-level equalizers (RLS-MMSE-B and LMS-MMSE-B) have
poor BER performance in a time-varying environment once the
initial conditions have been forgotten. An explication for this
convergence problem comes from the high condition number of
the cross-correlation matrixRxN ;xN (n) which result in a slow
convergence of the LMS algorithm and in a high sensitivity of
the LS solution in this nonzero residual problem [2].

3. With the considered value ofL (processing gain), the decision-
directed chip-level algorithms (MMSE-C and CE) do not need
initial or periodically transmitted training sequences to avoid
catastrophic error propagation.



4. The increase in complexity resulting from the use of DMI or
RLS over LMS does not translate in an increase in convergence
speed or, generally, in tracking performance.

5. In all the studied cases, the PC-MMSE algorithm does not give
an improvement in performance over what can be achieved
with a more classical decision-directed approach. In fact, the
PC-MMSE algorithm is noticeably worst than the chip-level
decision-directed approaches for moderate mobile speed.

6. Overall the LMS-CE algorithm has the best performance.

Note that the numerical complexity of LMS-CE and DMI-CE
(surprisingly RLS-CE is more computationaly complex) is domi-
nated by the channnel-to-equalizer coefficients transformation. We
observed (although not shown here) that for the considered values
of Nu, this transformation is no longer required since taking the
channel coefficients directly as equalizer coefficients gives simi-
lar BER performance (sometimes better, especially when the mo-
bile speed is high and there is a high number of interferes). It
is therefore possible to significantly reduce the complexity of the
CE algorithms making them computationally competitive with the
MMSE-C algorithms.

6. REFERENCES

[1] D. Gerlach, “Base station array receivers in cellular CDMA,”
26th Asilomar Conf. on Signals, Syst. and Comp., Pacific
Grove, CA, USA, pp. 646–650, oct. 1992.

[2] G. H. Golub and C. F. Van Loan,Matrix Computations, The
Johns Hopkins University Press, Second Edition, 1989.

[3] B. H. Khalaj, A. Paulraj, T. Kailath, “2D RAKE receivers for
CDMA cellular systems,”Proc. of IEEE Globecom, San Fran-
cisco, CA, pp. 1–5, Dec. 1994.

[4] H. Liu, D. Zoltowski, “Blind equalization in antenna array
CDMA systems”IEEE Trans. on Signal Processing, vol. 45,
pp. 161–172, Jan. 1997.

[5] M. Martone, “Blind multichannel deconvolution in multiple
access spread spectrum communications using higher order
statistics,”Proc. ICC’95, pp. 49–53, June 1995.

[6] R. A. Monzingo, T. W. Miller, Introduction to Adaptive Ar-
rays, John Wiley & Sons, 1980.

[7] A. F. Naguib, A. Paulraj, “Performance of DS/CDMA with
M-ary orthogonal modulation cell site antenna arrays,”Proc.
ICC’95, pp. 697–702, June 1995.

[8] R. Price, P. E. Green Jr., “A communication technique for mul-
tipath channels,”Proc. IRE, vol. 46, pp. 555–570, 1958.

[9] A. Stéphenne, B. Champagne, “A new multi-path vector chan-
nel simulator for the performance evaluation of antenna ar-
ray systems,”Proc. PIMRC’97, Helsinki, Finland, pp. 1125–
1129, Sept. 1997.

[10] B. Suard, A. F. Naguib, G. Xu, and A. Paulraj, “Performance
of CDMA mobile communication systems using antenna ar-
rays,”Proc. ICASSP’93, pp. IV-153–IV-156, April 93.

[11] L. Tong, G. Xu, and T. Kailath, “Blind identification and
equalization based on second-order statistics: a time domain
approach,”IEEE trans. on inf. theory, vol.40, no. 2, pp. 340–
349, March 94.

0 10 20 30 40 50 60 70 80 90 100

10
−2

10
−1

bit number

B
E

R
 e

st
im

a
te

LMS−MMSE−C
DMI−MMSE−C
PC−MMSE   
LSE       
LMS−MMSE−B
RLS−MMSE−B
LMS−CE    
DMI−CE    

(a)Nu = 200, v = 15m=s

0 10 20 30 40 50 60 70 80 90 100
10

−2

10
−1

bit number

B
E

R
 e

st
im

a
te

LMS−MMSE−C
DMI−MMSE−C
PC−MMSE   
LSE       
LMS−MMSE−B
RLS−MMSE−B
LMS−CE    
DMI−CE    

(b)Nu = 200, v = 30m=s

0 10 20 30 40 50 60 70 80 90 100
10

−3

10
−2

10
−1

bit number

B
E

R
 e

st
im

a
te

LMS−MMSE−C
DMI−MMSE−C
PC−MMSE   
LSE       
LMS−MMSE−B
RLS−MMSE−B
LMS−CE    
DMI−CE    

(c)Nu = 80, v = 30m=s

Figure 2: BER estimate vs bit index for different speed and number
of interferes.


