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ABSTRACT

Adaptation techniques that benefit from distribution correlation
are important in practical situations having sparse adaptation data.
The so called EMAP algorithm provides an optimal, though ex-
pensive, solution. In this article we start from EMAP, and propose
an approximate optimisation criterion, based on maximising a set
of local densities. We then obtain expressions for these local densi-
ties based on the principle of minimum cross-entropy (MCE). The
solution to the MCE problem is obtained using an analogy with
MAP estimation, and avoids the use of complex numerical pro-
cedures, thus resulting in a simple adaptation algorithm. The im-
plementation of the proposed method for the adaptation of HMMs
with mixture Gaussian densities is discussed, and its efficiency is
evaluated on an alphabet recognition task.

1. INTRODUCTION

Model adaptation algorithms are currently a key component in
practical speechrecognition systems, to overcome the performance
degradation resulting from the mismatched testing conditions that
are often encountered in real world applications. Although MAP
adaptation techniques (e.g. [2]) are theoretically optimal, their
convergence is slow because they do not influence unobserved
model parameters. A solution to this problem, which is widely
employed in practice, is to estimate a set of transformations of the
system parameters, as in Maximum likelihood linear regression
(MLLR) [5], and to adjust the degree of sharing of these transfor-
mations according to the available amount of adaptation data, thus
transforming all model parameters even for very limited adapta-
tion speech. Yet, another way of approaching the above mentioned
problem is to use parameter correlation to predict unobserved dis-
tributions from observed ones. Interestingly, these kinds of predic-
tive techniques can be used separately or even in conjunction with
transformation techniques as MLLR [6].

To this end, an optimal way of using correlation is to adopt
a joint prior distribution of all the system parameters. This tech-
nique was developed in [4] for the means of Gaussian distributions,
and referred to as extended MAP (EMAP) estimation. However,
applying EMAP to a practical speech recognition system is very
expensive in terms of computation and storage requirements, and
some interesting approximations for feasible implementation can
be found in [7, 9].

In this article we start from EMAP and we propose an approx-
imate optimisation criterion based on iteratively maximising the
posterior marginals. Then by making some assumptions we fur-
ther simplify the posterior marginals into a set of local densities.
By viewing the adaptation data as a set of constraints, we formulate
the problem in a minimum-cross entropy (MCE) setting, where
expressions for these local densities can be easily derived. The

solution to the MCE problem is based on an analogy with conven-
tional MAP adaptation, which alleviates the need of using expen-
sive numerical procedures, and results in a very simple adaptation
algorithm. Finally, we show the utility of the proposed method in
adaptation scenarios having sparse data.

The paper is organised as follows. Section 2 gives the formu-
lation and basic assumptions of the problem, that lead to iterative
maximisation of a set of local densities. Expressions for these lo-
cal densities are obtained by using the principle of MCE in Section
3. Section 4 shows the implementation of the proposed method for
the adaptation of mean vectors of hidden Markov models (HMMs)
with Gaussian mixture densities, followed by experimental evalu-
ation and conclusion in Sections 5 and 6 respectively.

2. PROBLEM FORMULATION

Consider a system havingNg classes, and refer to the adaptation
data asX. The extended MAP criterion for the correlated mean
vector�

Ng
1 � (�1; :::::::::;�Ng ) can be written as

�̂
Ng
1 = argmax

�
Ng

1

p(�
Ng
1 jX) (1)

An approximate solution to (1) can be obtained by iteratively max-
imising the posterior marginals for each componentmean as shown
in (2). Compared to the exact criterion, (2) is computationally
more efficient, and its use is inspired by coordinate descent meth-
ods in optimisation theory.

�̂k = argmax
�k

p(�kj�l : l 6= k;X) (2)

Further, for the distribution on the right hand side of (2) we make
the following simplifying assumptions

1. p(�k j�l : l 6= k;X) � p(�k j�l : l 6= k;Xk),where
Xk is the subset of the adaptation data belonging to the
distributionk.

2. p(�k j�l : l 6= k;Xk) � p(�kj�l : l 2 N (k);Xk), where
N (k) is the neighbourhood ofk .We will show later how to
findN (k).

3. p(�k j�l : l 2 N (k);Xk) � p(�k jfkl(�l; �kl) : l 2
N (k);Xk), wherefkl(�l; �kl) is a parametric transforma-
tion function, and�kl is a parameter set to be specified later.

In the posterior marginals in (2) each component mean�k is as-
sumed dependent on the whole adaptation data, and on all other
means in the system. Assumption 1 restricts the data dependence
to the subset of the adaptation data belonging to distributionk.
While the dependenceon other means is confined to the neighbour-
hood of distributionk using Assumption 2. Finally Assumption 3
uses a functional form of the correlation between two parameters,



and implicitly enforces a certain form of their joint distribution,
e.g. a Gaussian distribution in the case of a linear function.

Thus, the optimisation criterion in (2) further simplifies to it-
eratively maximising the approximate posterior marginal in (3) for
each component mean

�̂k = argmax
�k

p(�kjfkl(�l; �kl) : l 2 N (k);Xk) (3)

where1 � k � Ng. In section 3 we will show how to obtain
expressions of the density in (3) using MCE. For simplicity of dis-
cussion we will focus on scalar observations.

3. LOCAL DENSITY DERIVATION USING MCE

In this section, we show how to obtain expressions for the densities
in (3) by applying the principle of MCE. We first consider the clas-
sical MAP case, i.e. no neighbourhood information is used, then
we extend the result by introducing the effect of neighbourhoods.

3.1. Conventional MAP

Consider mean�k as a random variable having prior distribution
p(�k) given by

p(�k) = (2��2k)
�1=2 exp

�
�
(�k � �Ik)

2

2�2k

�
(4)

where�Ik is an initial estimate of�k and�2k the variance of�k.
Now, consider that new information about�k is available through
the adaptation dataXk. This information can be represented as the
moment constraint on the posteriorq(�k) � p(�kjXk) as followsZ

(�k � �xk)
2q(�k) d�k = ��2k (5)

where�xk is the sample average ofnk observations belonging tok,
and��2 will be specified below.
The posteriorq(�k) having minimum cross-entropy (H(q; p) �R
q(�k) log(q(�k)=p(�k))d�k) with the priorp(�k), and satis-

fying the constraint in (5) is known to have the form (e.g. [8])

q(�k) = p(�k) exp(��� �k(�k � �xk)
2) (6)

where�k, and� are Lagrangian multipliers for the constraint (5),
and the normalising constraint

R
q(�k)d�k = 1 respectively.

After some simplification, we can rewrite (6) as

q(�k) = (2���2k )�1=2 exp(�
(�k � ��k)

2

2��2k
) (7)

where

��k =
�k�xk + �Ik=2�

2
k

�k + 1=2�2k
(8)

1=2��2k = �k + 1=2�2k (9)

It is well known that the mean and variance of the posterior distri-
bution in conventional MAP adaptation are given by

�k;map =
nk �xk=�

2
xk + �Ik=�

2
k

nk=�2xk + 1=�2k
(10)

1=�2k;map = nk=�
2
xk

+ 1=�2k (11)

where�2xk is the sample variance of observations of distributionk.
By comparing (8)-(9) to (10)- (11) we see that the two esti-

mates coincide when�k = nk=2�
2
xk

. In this case the value of��2k
in (5) will be given by

��2k = ��2k + (��k � �xk)
2 (12)

where��k and��2k are calculated from (8) and (9), and�k =
nk=2�

2
xk .

Thus, the MCE estimate ofq(�k) with the constraint (5), and
��2k given by (12) will coincide with the MAP estimate. Note that
this result is obtained without making Gaussian assumption on the
distribution of observations fromk.

3.2. Adding neighbourhood information

The result in the previous section establishes a relationship be-
tween both MAP and MCE estimation, the important consequence
is that we have a way for calculating the Lagrange multipliers us-
ing this analogy without resorting to complex numerical proce-
dures. Here, we will build on this analogy to derive expressions
for the local densities in (3).
Now in addition to (5) we consider the constraints imposed by the
neighbourhoods of distributionk as:Z

(�k � �kjl)
2q(�k) d�k = ��2kjl 8l 2 N (k) (13)

where�kjl is short hand forfkl(�l; �kl), and the parameters��2kjl
will be specified below.
Using the same reasoning as in the previous subsection we can
write the posteriorq(�k) � p(�kjfkl(�l; �kl) : l 2 N (k);Xk)
as follows:

q(�k) = p(�k) exp(����k(�k��xk)
2�

jN (k)jX
l=1

�kjl(�k��kjl)
2)

(14)
where�k, and� are as the previous subsection, and�kjl’s are La-
grangian multipliers for the constraints (13).
Inspired by the case of conventional MAP estimation, we take
�k = nk=2�

2
xk

, and analogously�kjl = 1=2�2kjl (we will show
how to calculate its value in the implementation section). After
some simplifications, we arrive at

q(�k) = (2���2k )�1=2 exp

�
�
(�k � ��k)

2

2��2k

�
(15)

where

��k =
nk �xk=�

2
xk

+ �Ik=�
2
k +
PjN (k)j

l=1
�kjl=�

2
kjl

nk=�2xk + 1=�2k +
PjN (k)j

l=1 1=�2kjl
(16)

1=��2k = nk=�
2
xk + 1=�2k +

jN (k)jX
l=1

1=�2kjl (17)

Also as in the conventional MAP case, for this choice of Lagrange
multipliers the values of��2kjl ’s in (13) must satisfy

��2kjl = ��2k + (��k � �kjl)
2 8l 2 N (k) (18)

Using the density in (15) it is trivial to show that the maximisation
in (3) is obtained for�k = ��k, where��k is given by (16). It should
be also noted that by removing the neighbourhood information in
(16) it reduces to the conventional MAP case (8).



4. APPLICATION TO HIDDEN MARKOV MODEL
ADAPTATION

Having developed an approximate maximisation criterion, and de-
rived expressions for the resulting local densities, we are interested
in applying the proposed technique to the adaptation of mean vec-
tors of hidden Markov models with Gaussian mixture densities. In
this case, we consider all state component distributions of all mod-
els as forming a large pool of sizeNg. Moreover, when using diag-
onal covariance matrices the algorithm can be separately repeated
for each vector dimension. We now, following [1], consider some
choices for the practical implementation of the algorithm.

The neighbourhoodN (k) of distributionk is taken from its
mostly correlated distributions (i.e. those having highest values of
jrklj). For each distributionl in this neighbourhood, the transfor-
mation function is taken to be linear as shown in (19)

�kjl � fkl(�l; �kl) = akl�l + bkl (19)

It can be shown that (see e.g. [1]) the optimum values ofakl and
bkl in a MMSE sense are given by

akl =
rkl�k
�l

(20)

bkl = �Ik � akl�
I
l (21)

where�Ik(l) is an initial estimate of meank(l), �k(l) is the corre-
sponding prior standard deviation, andrkl is the correlation coef-
ficient betweenk andl. In turn, estimates of the correlation coef-
ficients and the variances can be easily obtained using the moment
method from a training set consisting ofN groups (e.g. speakers).
In this case the variance of the estimate�kjl can be shown to be
equal to

�2kjl = �2k(1� r2kl) + a2klV ar(�l) (22)

where the first term accounts for the prediction error, and the sec-
ond accounts for the fact that we use an estimate of�l not its true
value, andV ar(�l) can be calculated as in (17).

4.1. Summary of the adaptation algorithm

For completeness, we present a summary of both the training and
adaptation phases of the proposed algorithm.

1. Training Phase

� Start withN instantiations of each mean (e.g. from
different speakers), and a set of initial models (e.g.
speaker independent models).

� Assign the training speech to corresponding distribu-
tions using the Viterbi algorithm and the initial mod-
els.

� For each distribution estimate the variance, and the
correlation with all other distributions using the method
of moments. Starting from these values, construct the
neighbourhood of each distribution, and calculate the
values of its transformation parameters using equa-
tions (20) and (21).

2. Adaptation Phase

� Assign the adaptation data to corresponding distribu-
tions using the Viterbi algorithm and the set of initial
models.

� Collect statistics (counts and sample averages) of all
distributions.

� Iterate until convergence

– For each distribution, calculate the adapted mean
using equation (16) (where�kjl is calculated us-
ing (19), and�2kjl is calculated using (22)).

– For each distribution, calculate the variance us-
ing (17).

5. EXPERIMENTAL RESULTS

We used two databases to evaluate the performance of the pro-
posed algorithm in an isolated alphabet (26 words) recognition
task. The first is the OGI ISOLET alphabet database, which con-
tains 2 repetitions ofeach letter from 150 speakers (75 male/75
female). The second is the alphabet subset of the TI46 database,
which contains 26 repetitions (10 in one session and 16 in 8 ses-
sions i.e. two per session) of each letter from 16 speakers (8 male/8
female). Both databases were down-sampled to 8 kHz. Speech is
parametrised using 12 MFCC, and cepstral mean normalisation is
carried out at the utterance level as a means of acoustic normal-
isation. Each letter is represented by 5 state left-to-right HMM
with no skipping, and each state is represented by a 4-component
Gaussian mixture with diagonal covariances. Feature extraction
and initial model training were performed using HTK.

Initial speaker independent models are constructed using the
ISOLET database, while TI46 is used for adaptation and testing.
The first 10 repetitions from TI46 were used to estimate the neigh-
bourhood structure and transformation functions parameters as out-
lined in the previous section. From the remaining 8 sessions the
first utterance was used for test while the second was reserved for
adaptation. Due to some missing files the total number of files
used in testing is 3318. The speaker independent recognition rate
is 53.5%, which indicates the severe mismatch between the two
databases. Experimental results using the same databases but us-
ing an online adaptation scenario are reported in [3]

We performed two types of adaptation experiments. In the first
one, we used adaptation utterances from all classes and varied the
number of repetitions fromeach class from 1 to 8. We refer to
these experiments as smoothing experiments, as in this case the
neighbours can be viewed as performing a form of smoothing. In
the second set of experiments, we used only 1 adaptation utterance
from each class, and in addition we randomly sampled the classes
to obtain 13, 8, 6 and 4 classes for use in adaptation. These experi-
ments are referred to as prediction experiments, as neighbourhood
information is doing a sort of prediction for the missing classes.
The results for both types of experiments are shown in figures 1
and 2 respectively. In the case of using neighbourhood informa-
tion, three iterations of the adaptation algorithm were used, while
in the case of zero neighbourhood (note that this is conventional
MAP) no iterations are required.
From the presented results it can be seen that the proposed method
is beneficial compared to conventional MAP when all classes are
present but having sparse adaptation data, and also when some of
the classes are missing. When sufficient adaptation data exists for
all classes the performance slightly degrades, maybe due to the in-
crease of the smoothing effect. Also it can be observed that in the
case of prediction experiments it is more desirable to use a larger
size of the neighbourhood in contrast to the smoothing case where
a smaller size of the neighbourhood seems more adequate.
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Figure 1: Results for smoothing experiments. In this case all
classes are used for adaptation,and the number of tokens from each
class is varied from 1 to 8. Speaker independent recognition rate
is 53.5%
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Figure 2: Results for prediction experiments. In this case we ran-
domly sample the classes in order to use 13,8,6,and 4 classes dur-
ing adaptation, and the number of tokens from each class is fixed
to one. Speaker independent recognition rate is 53.5%

6. CONCLUSION

We have presented an adaptation algorithm which approximates
the theoretically optimal EMAP algorithm, and requires far less
computation. The basic idea is to use a simplified iterative optimi-
sation procedure for a set of local densities. Expressions for these
densities were obtained by applying the MCE principle, and using
an analogy with classical MAP estimation for direct calculation of
the Lagrange multipliers. The resulting algorithm is very simple,
and when implemented in the context of HMMs with Gaussian
mixture densities, it resulted in significant improvement over clas-
sical MAP adaptation for sparse adaptation data, and when some
classes were missing during adaptation.
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