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ABSTRACT
Orthogonal Frequency Division Multiplexing (OFDM) has
become increasingly popular due to its potential applications in
digital audio broadcasting, digital terrestrial TV broadcasting,
and satellite communication.  A notable drawback of OFDM
systems is their sensitivity to nonlinear distortion.  For maximum
power efficiency, amplifiers and transmitters of modern
communication systems often operate near their saturation
regions which leads to nonlinear distortion.  In this paper, we use
the special property that the transmitted OFDM symbols are
asymptotically white Gaussian to derive an algorithm that
identifies the nonlinear channel.  A nonlinear equalizer is built to
compensate for the undesired nonlinearities.  Simulation results
show that the nonlinear equalizer outperforms its linear
counterpart when nonlinear distortion is present.

1.  INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) has
received a considerable amount of attention in the recent years.
It has been proposed for use in digital audio broadcasting, digital
terrestrial TV broadcasting, and satellite communication [2].
OFDM’s current popularity stems from a number of nice traits
that it offers.  Equalization of potentially long multipath channels
that typify urban environments is possible with a bank of 1 tap
equalizers [8].  It is bandwidth efficient since the spectra of
neighboring channels overlap, yet the channels can still be
separated through the use of orthogonality. Its structure makes it
easy to allocate more bits to parts of the channel with better
transmission characteristics [2], and efficient hardware
implementations are possible using FFTs and polyphase filtering.

In modern communication systems, a premium is often placed on
power efficiency.  This results in operating amplifiers such as
traveling wave tubes (TWTs) in their nonlinear region.  The
concatenation of a linear transmitter filter, nonlinear amplifier,
and linear channel, is a nonlinear channel with memory.  To
improve the recovery of the original OFDM symbols, nonlinear
channel identification and equalization must be performed.

Past work in this area has usually centered around the use of
memoryless nonlinear mappings to invert the effects of the
presumably memoryless nonlinear amplifier [4].  This requires
precise knowledge of the nonlinear amplifier’s amplitude and
phase characteristics, and the assumption that they do not change
over time.  Also, the nonlinearity is usually assumed to be

frequency independent.  For high bandwidth communication
systems, these assumptions begin to break down.

In this paper we follow a different, more general approach to
dealing with the nonlinear channel in the OFDM system.  We
model the nonlinear channel as a truncated Volterra series [10].
To identify the nonlinear channel, we exploit the property that
the output of the OFDM transmitter is an asymptotically white
Gaussian random process.  This characteristic is often seen as a
problem, since nonconstant envelope modulation formats
typically perform poorly with nonlinear amplifiers.  However, we
use it to our advantage.  It allows us to derive a formula for
closed form baseband Volterra system identification when the
channel input is circular complex Gaussian.  (If the real and
imaginary parts of a complex random variable X are mutually
independent and have the same distribution, then X is said to be
circular complex).  This is done in a manner similar to a recent
method developed for the identification of a real Volterra system
when the input is real Gaussian [6].  Equalization of the
nonlinear channel is done using a serial structure of Volterra
filters derived from the identified channel [7], [11].  Simulations
demonstrate that the nonlinear channel identification and
equalization procedure improves the performance of OFDM
systems in the presence of nonlinearity.

2.  BACKGROUND
A simplified block diagram of an OFDM system is shown in
Figure 1. The input data is encoded into a stream of symbols,
often of a format such as QAM or PSK.  Groups of N symbols
are collected and sent to the IFFT.  N is typically a power of 2 to
facilitate a fast implementation.  By inserting a guard interval
after the IFFT (a cyclic extension that is longer than the channel),
then removing it before the FFT, there is no interference between
consecutive groups of N symbols.  If the number of channels N is
chosen such that the overall transfer function does not change
significantly over an individual channel, then equalization of an
individual channel is reduced to multiplication by a complex
constant [8].

2.1  (Approximate) Gaussian IFFT Output

It is well known (e.g., [4] p.95) that when X(k) is zero-mean,
i.i.d., and with finite variance, then its IDFT values
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are zero-mean, circular complex, and asymptotically white
Gaussian distributed.  This is true regardless of the distribution of
X(k). Therefore, the outputs of the IFFT block in Figure 1 are
approximately Gaussian distributed, regardless of the distribution
of the symbol stream (e.g., QAM, PSK) coming into the IFFT
unit.  The larger the block length N, the better the approximation.
It is this special Gaussian property that allows us to perform
closed form nonlinear channel identification and equalization for
OFDM systems.

Figure 1:  OFDM block diagram.

2.2  Nonlinear Channel

Nonlinearity enters into the OFDM system in a number of places.
The most obvious is at the transmitter, where a nonlinear
amplifier such as a TWT is often used.  The output of the IFFT is
a signal with varying amplitude which usually has a high peak-
to-average signal power ratio.  Therefore, the concatenation of
the polyphase filters, TWT, channel, and receiver filters is a
nonlinear system with memory.  The Volterra series provides a
general approach to modeling nonlinearities of this type.

3.  CHANNEL IDENTIFICATION

3.1  The Baseband Volterra Channel

Previous work has been done on using the Volterra series to
model nonlinear channels with memory.  It has been shown in
[1] that for a baseband equivalent model of a bandpass
communication system, only the odd-order kernels of the
Volterra series contribute to the output.  For a (2P+1)th-order
baseband Volterra series, the input-output relationship can be
written as
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Note that the (2p+1)th-order term has p conjugated copies and
p+1 unconjugated copies of the input.

3.2  Baseband Volterra Kernel Identification

In this subsection we derive a closed form expression for the
baseband Volterra kernels in terms of input-output data assuming
that the input x(n) is zero mean, i.i.d., Gaussian distributed with
variance A (c.f. Section 2.1).  The derivation mimics that of [6],
but is different in the sense that we have conjugated entries in the
baseband Volterra series and that x(n) is circular complex.  To
estimate the highest (i.e. 2P+1) order kernel, we consider the
cross cumulant (for definitions and properties of cumulants, see
[4] p.19) between y(n) and 2P+1 delayed copies of the input, P
of which are unconjugated and P+1 of which are conjugated.
Using the Leonov-Shiryaev formula [4, p.21], we find that

( ) ( ) ( ) ( ) ( ){ }
( )

cum y n x n u x n u x n u x n u

s u u A h u u

P P P

P
P

P P

, , , , , ,

( , , ) , ,

− − − −

=

∗
+

∗
+

+
+

+ +

1 1 2 1

1 2 1
2 1

2 1 1 2 1

� �

� �

where s(u1, ..., u2P+1) is the number of ways that conjugated
(unconjugated) delayed copies of the inputs can be paired with
unconjugated (conjugated) inputs in y2P+1(n) having the same
delay.  As an example, for the cubic kernel we have: s(0, 0, 0) =
2, s(0, 0, 1) = 1, s(1, 0, 1) = 1, and s(1, 1, 1) = 2.

Therefore, given the input x(n) and the output y(n), we can
estimate the highest order nonlinear kernel once the above cross
cumulant is estimated.  Afterwards, we remove y2P+1(n) from y(n)
to reduce the highest order nonlinearity to 2P-1.  We then repeat
the same procedure, using the residual series and 2P-1 copies of
the input, P-1 of which are unconjugated and P of which are
conjugated, to estimate the (2P-1)th-order baseband Volterra
kernel.  This process is repeated until all of the kernels have been
estimated.

As an example, consider a linear-cubic system.  The third-order
kernel is estimated from:
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from y(n) to form y1(n) = y(n) - y3(n).  The linear kernel is then
estimated from
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Formulas for the second and fourth-order cumulants (needed for
the first and third-order kernel estimates, respectively) of zero-
mean random variables are:
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In practice, we substitute the expected value E[•]  by the time
average to form the sample moment estimate.  We then use the
above formulas to find the sample cumulant.

4.  CHANNEL EQUALIZATION

After the Volterra kernels are estimated, the next step is to design
an equalizer to remove the nonlinear intersymbol interference.
We used an approach based on the contraction mapping theorem
(CMT) that gives some implementation flexibility while
providing a theoretical basis for convergence [7], [11].

We would like to design an equalizer G, for the (2P+1)th-order
system H with input x0 and output y, such that the output of G, x,
approximates x0 (see Figure 2).  Following the derivation in [7],
the formula for the equalizer is found as:
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Bx Cx x Bx Cx xi i0 0 1− = − =−  or  .

The resulting equalizer takes the form of Figure 3.  If the
mapping T(x) = Bx0 - Cx satisfies the requirements of the CMT
[5], then xi → x and the system is equalized.  Simulations have
shown that the good results are typically obtained after a few
iterations [7].

Figure 2:  Nonlinear system H with equalizer G.

Figure 3:  Serial equalizer structure.

5.  SIMULATIONS

5.1  Channel Identification

We provide here a numerical example to illustrate the proposed
identification algorithm for an OFDM system.  The nonlinear
channel was linear-cubic and 16384 16-QAM symbols were used
as the input.  The symbol stream was split into 16 frames of
length 1024 each.  100 Monte Carlo trials were performed to
determine the mean and standard deviation of the kernel
estimates, with results shown in Tables 1 and 2.

Table 1:  First-Order Kernel

Lag 0 1 2

Value 1.0000 0.5000 -0.2400

Mean 1.0006 0.5009 -0.2401

Std. Dev. 0.0141 0.0225 0.0036

Table 2:  Third-Order Kernel

Lag (0,0,0) (0,0,1) (1,0,1) (1,1,1)

Value -0.5000 0.2000 -0.3000 0.4000

Mean -0.4987 0.1935 -0.3058 0.4002

Std. Dev. 0.0196 0.0363 0.0370 0.0425

Since the cubic kernel values are comparable to those of the
linear kernel, the nonlinearity here is rather severe. In general,
higher order kernel estimates tend to have larger variance due to
the higher-order cumulant used. But lower order kernels may
also suffer from high variance because of error propagation.
(Keep in mind that the linear kernel is estimated last). The bias
and standard deviation shown in Tables 1 and 2 seem to be
reasonable.

5.2  Channel Equalization

Once the nonlinear channel was identified as illustrated in
Section 5.1, we implemented a 5 stage nonlinear equalizer based
on the CMT principal explained in Section 4.  Figure 4 shows the
scatter diagram of the unequalized output symbols at SNR =
30dB.  SNR is defined here as
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where v(n) is the additive white Gaussian noise in Figure 1.
Figure 5 shows the equalized symbols after 5 iterations of the
nonlinear equalizer.  We varied the SNR level and calculated the
error probability in the equalized symbols.  As a comparison, we
also implemented the 1 tap linear equalizer and computed its
error probability.  The result is shown in Figure 6.  The nonlinear
equalizer outperforms the linear equalizer, especially at higher
SNR.
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Figure 4: Unequalized output constellation.
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Figure 5:  Equalized output constellation using 5 iterations of
the equalizer designed from the estimated kernels.
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Figure 6:  Symbol error probability vs. SNR.  The linear
equalizer corresponds to the dashed line, and the nonlinear
equalizer to the solid line.

6.  CONCLUSIONS

We proposed a new method for dealing with possible
nonlinearities in OFDM systems, taking advantage of the
approximately white Gaussian property of the IFFT output in
OFDM systems.  The channel was modeled as a baseband
Volterra series and identified by using a new formula derived for
baseband Volterra system identification.  Equalization was
achieved via a serial structure of Volterra filters created from the
identified channel.  Simulations demonstrated the effectiveness
of the proposed methods.
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