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ABSTRACT

In this paper, we present a wavelet based non-linear interpola-
tive vector quantization scheme for joint compression and restora-
tion of images; two tasks which are traditionally regarded as hav-
ing conflicting goals. Vector quantizer codebook training is done
using a training set consisting of pairs of the original image and
its diffraction-limited counterpart. The designed VQ is then used
to compress and simultaneously restore diffraction-limited images.
Results from simulations indicate that the image produced at the
output of the decoder is quantitatively and visually superior to the
diffraction-limited image at the input to the encoder. We also com-
pare the performance of several wavelet filters in our algorithm.

1. INTRODUCTION

Vector quantization(VQ) is a very widely used compression tech-
nique in image coding [1]. In recent years, it has also been used to
do various kinds of image processing while concurrently achieving
compression [2]. VQ has been used to do such diverse image pro-
cessing as edge detection [3], histogram modification [4], volume
rendering [5], classification [6], and restoration [7]. In this paper,
we present a non-linear interpolative vector quantization (NLIVQ)
basedrestoration techniqueusing wavelets. We train a vector quan-
tizer on pairs of original and diffraction-limited images, while us-
ing the wavelet transform to scale down the complexity of the train-
ing procedure.

2. IMAGE RESTORATION AND SUPER RESOLUTION

The problem of image restoration deals with estimating an im-
age given its degraded version. In this paper, the problem of blur
caused by diffraction-limited, unaberrated optics with incoherent
illumination is dealt with. Optical systems with these characteris-
tics can be modeled as linear, shift-invariant operators with well de-
fined optical transfer functions derived from the scalar diffraction
theory of light [8]. These optical transfer functions have a cutoff
frequency such that all information in the object above it is sup-
pressed.

The diffraction-limited image, g(x; y), can be expressed as a 2-
D convolution of the form

g(x; y) =

Z Z
f(�;�)h(x� �; y � �)d�d� (1)
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where f(x;y) is the original object and h(x; y) is the point spread
function of the optical system. The problem of estimating f(x;y),
given g(x; y), h(x; y), and (possibly) some a priori knowledge of
f(x;y), is referred to as the inverse problem. In general, this prob-
lem may be of an ill-posed nature due to the presence of noise in the
acquired image and/or singularities in the imaging system.

Image restoration techniques can be broadly classified as being
linear or non-linear. While linear techniques such as Inverse and
Wiener filtering do a good job of restoring information below the
optical cutoff frequency, they are incapable of extracting informa-
tion above it [9]. However, there exist non-linear techniques capa-
ble of doing passband restoration as well as extracting information
above the optical cutoff. Such a restoration process is referred to
as super resolution.

Algorithms based on Bayesian estimation [9] and convex set
projections [10] have been shown to perform super resolution. For
a detailed review of super resolution, the reader is referred to [11].

3. NON-LINEAR INTERPOLATIVE VECTOR
QUANTIZATION

Vector quantization is a mapping of vectors from one domain to
another, in order to better achieve a desired purpose such as com-
pression. Mathematically, a vector quantizer, Q, of dimension k
and size K is a mapping from a vector in k-dimensional Eucle-
dian space,Rk , into a finite setC containingK reproduction points
called codewords. Thus

Q : Rk ! C (2)

where the setC is called the codebook of sizeK . The rate of such
a VQ is said to be r = log2K

k
bits/dimension.

NLIVQ was introduced by Gersho, as a technique that can be
used to mitigate the complexity barrier posed by direct VQ at
higher dimensions, even at moderately high rates [12]. The basic
idea of NLIVQ is as follows. Let X be a random vector of dimen-
sion k. Now, if k is relatively large, then ordinary full search VQ
is not feasible at high rates. But if it is possible to extract a suitable
“feature vector”, U , of dimension n < k, then X can be estimated
from the vector quantized version, Û , of U . This estimation pro-
cess ofX from Û can be accomplished in one step by designing the
interpolative decoder such that it is optimal for a given encoder. It
may be noted here that the encoder and decoder codebooks would
be of the same size but of dimensions n and k respectively. It is
also important to realize that the choice of a suitable feature vector
depends entirely on the application and that there is no restriction
on its dimensionality.



In [7], Sheppard et al. introduced a novel use of NLIVQ for im-
age restoration. Mathematically, the NLIVQ for image restoration
can be described as follows. Let fF i;GigNi=1 be a sequence of im-
age pairs, whereF i andGi are the original and diffraction-limited
images, respectively. Decompose each image into M �M non-
overlapping blocks. Let f ij and gij be blocks j from F i and Gi

respectively. Assume that the encoderE, decoderD, and the asso-
ciated codebook C , are given for a VQ that minimizes the mean-
squared error

MSE = Ek gij � ~gij k
2
: (3)

The process of choosing the quantized block ~gij can be written as

~gij =D(E(gij)) = arg min
cl�C

k gij � cl k
2
; (4)

where cl refers to the lth entry of C .
Next, a new decoderD� and its associated codebookC� is de-

rived by minimizing the conditional expectation

E[k f ij � ~f ij k
2
jE(gij) = l]; (5)

where encoderE returns the index of the optimal codebook entry.
For a given set of training data, let Rl = ff ij : E(gij) = lg.
Define entry l of C� as the centroid of Rl, or

c
�

l =

�
1

jRlj

� X
fij�Rl

f
ij (6)

where jRlj denotes the cardinality of Rl. Finally, the NLIVQ
restoration algorithm is given by

~f ij =D�(E(gij)) = c
�

E(gij ); (7)

where ~f ij is the restored image block. The NLIVQ based restora-
tion strategy, described above, is shown in Figure 1.
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Figure 1: NLIVQ based restoration strategy.

4. CODEBOOK DESIGN ALGORITHMS

The crux of the design procedure is the design of the encoder code-
book C . The decoder codebook, C� , can be derived easily once
C has been determined. A technique commonly used in VQ code-
book design is the Lloyd algorithm [13]. Although the Lloyd algo-
rithm is conceptually simple, it has heavy computational require-
ments and its use limits the NLIVQ to low encoding rates and small
block sizes.

In [7], a non-iterative, discrete cosine transform (DCT) based
approach was proposed to overcome this problem. Although
this approach allowed the use of larger block sizes and resulted
in significant improvements quantitatively and visually, the re-
stored/compressed images had blocking artifacts. Later, an im-
proved version of the algorithm was presented in [14], wherein,
overlapped blocks were employed. Many of the blocking artifacts
of the earlier algorithm were suppressed, and the restored images
were qualitatively and quantitatively better. Unfortunately, with
the use of overlapping of blocks, no compression was achieved.

In this work, we improve the DCT-based design procedure of [7]
using a wavelet-based approach as described in this section. The
proposed algorithm does not have the blocking artifacts of [7], and,
unlike [14], performs joint compression and restoration.

Given a training image, we perform a m-level uniform sub-
band decomposition using the discrete wavelet transform, resulting
in 4m equal-sized subbands. Spatially corresponding coefficients
from each band are combined to form blocks of size 2m � 2m .
These wavelet coefficient blocks are then treated as VQ training
vectors. This procedure is illustrated in Figure 2 for a 2-level uni-
form decomposition.
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Figure 2: Formation of wavelet training blocks.

Wavelet-Based Encoder Design

� GivenN original training imagesF i, create their diffraction-
limited counterparts Gi.

� Create the 2m� 2m wavelet coefficient blocks, f ij and their
counterparts, gij , as described above.

� For a given bit rate of R bits/pixel, the L = R � 2m � 2m

bits available for each block are allocated among the wavelet
coefficients so that the quantization error is minimized.

� If rp is the number of bits allocated to the wavelet coefficient
in the pth subband, a Lloyd-Max scalar quantizer is designed
for these coefficients assuming a Laplacian distribution. This
procedure is repeated for each subband.

� An encoder codeword index is defined to be the decimal
equivalent of the concatenation of binary codes for the scalar
quantized wavelet coefficients.

This process implicitly defines a codebook C which is never ex-
plicitly computed or stored.

NLIVQ Decoder Design

� For each input wavelet coefficient block, gij , compute the in-
dex produced by the encoderE(gij) = q.

� Add the corresponding wavelet coefficient block, f ij , from
the original image to the accumulator a�q and increment the
counter s�q .



� Once all training blocks have been exhausted, compute each
codeword in C� as the average

c
�

q =
1

s�q
a
�

q : (8)

It is worthwhile to note here that the algorithms described above
are non-iterative and therefore much less computationally intensive
than the traditional Lloyd training algorithm.

5. SIMULATION RESULTS

We have performed simulations using the algorithms described in
the previous section with several different wavelet transforms. Our
training set consisted of 53 grayscale “urban” images, each of size
512�512. The blurred images were generated using a diffraction-
limited optical transfer function with a cut-off frequency equal to
half the folding frequency. We used a 2-level uniform subband de-
composition resulting in 4� 4 wavelet blocks.

In order to achieve relatively high rates that enable super reso-
lution, we treat the low-pass coefficients seperately as follows. We
first apply a Wiener filter on the diffraction-limited image. Then we
perform a 2-level uniform subband decomposition of this Wiener-
restored image and quantize the low-pass coefficients using r0 = 8
bits per coefficient. We allocate 20 bits to the remaining 15 co-
efficients of each block. This results in an overall rate of 1.75
bits/pixel.

In Table 1, we present the PSNR results on a test image that was
not in the training set. In the table, the PSNR between the original
and the blurred image is given, followed by the PSNR’s between
the original and the compressed/restored images at 1.75 bits/pixel
using different wavelets. We have used biorthogonalwavelet trans-
forms from [15], [16], and [17]. The notation (r; s) in the table de-
notes a wavelet transform with r and s filter taps for the analysis
and synthesis high pass filters, respectively. The PSNR improve-
ments for the restored images range roughly from 0.2 to 1.75 dB.

Figures 3 and 4 show the original and blurred images, respec-
tively. The restored image using the (2,2) filters of [15] is shown
in Figure 5. The visual improvement of Figure 5 over Figure 4 is
significant, especially considering that the restored image of Figure
5 is compressed at 1.75 bits/pixel. The restored image also shows
signs of modest super resolution, which is very encouraging.

Table 1: PSNR results

PSNR (dB)
Blurred CDF [15] VBL [16] TVC [17]

(2,2) (3,9) (3,9) (6,2) (11,13) (18,10)
22.55 24.28 22.74 23.00 24.00 23.51 23.27
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Figure 3: The original image.

Figure 4: The blurred image. Figure 5: The compressed/restored image at 1.75 bits/pixel.


